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Abstract

One of the open questions of arti cial computer vision is how to produe
good internal representations of the visual world. What sort of internal
representation would allow an arti cial vision system to detect and classify
objects into categories, independently of pose, scale, illuminatigrconforma-
tion, and clutter? More interestingly, how could an arti cial vision s ystem
learn appropriate internal representations automatically, the way animals
and humans seem to learn by simply looking at the world?

Another related question is that of computational tractability, and more

precisely that of computational e ciency. Given a good visual represen-
tation, how e ciently can it be trained, and used to encode new sen®rial

data. E ciency has several dimensions: power requirements, proessing
speed, and memory usage.

In this thesis | present three new contributions to the eld of computer
vision: (1) a multiscale deep convolutional network architecture to esily
capture long-distance relationships between input variables in imagelata,
(2) a tree-based algorithm to e ciently explore multiple segmentati on can-
didates, to produce maximally con dent semantic segmentations of image,
(3) a custom data ow computer architecture optimized for the computati on
of convolutional networks, and similarly dense image processing modgl All
three contributions were produced with the common goal of getting us aser
to real-time image understanding.

Scene parsing consists in labeling each pixel in an image with the cajery of
the object it belongs to. In the rst part of this thesis, | propose a method
that uses a multiscale convolutional network trained from raw pixels ©
extract dense feature vectors that encode regions of multiple sizesentered
on each pixel. The method alleviates the need for engineered featwse In



parallel to feature extraction, a tree of segments is computed from a grap
of pixel dissimilarities. The feature vectors associated with thesegments
covered by each node in the tree are aggregated and fed to a classi er vdhi
produces an estimate of the distribution of object categories containedn

the segment. A subset of tree nodes that cover the image are then seted

so as to maximize the average \purity" of the class distributions, herce
maximizing the overall likelihood that each segment contains a sing object.
The system yields record accuracies on several public benchmarks.

The computation of convolutional networks, and related models heavily
relies on a set of basic operators that are particularly t for dedicated
hardware implementations. In the second part of this thesis | introduce
a scalable data ow hardware architecture optimized for the computation of
general-purpose vision algorithms| neuFlow|and a data ow compiler|
luaFlow|that transforms high-level ow-graph representations of these al-
gorithms into machine code for neuFlow. This system was designed i
the goal of providing real-time detection, categorization and localizationof
objects in complex scenes, while consuming 10 Watts when implemtd
on a Xilinx Virtex 6 FPGA platform, or about ten times less than a lap-
top computer, and producing speedups of up to 100 times in real-world
applications (results from 2011).



To my wife, Domitille Farabet.
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Introduction

Central to this thesis is the question: how can we enable computerso automatically
and e ciently understand images? Understand being an ambiguous term, we start with
a few de nitions. From the dictionary:

De nition 1 | understand:

(1) to perceive the meaning of; grasp the idea of; comprehend.

(2) to assign a meaning to; interpret.

(3) to have a systematic interpretation or rationale, as in a eld or area of knowledge.

De nition 2 | image:

an optical counterpart or appearance of an object, as is produceby re ection from a
mirror, refraction by a lens, or the passage of luminous rays throgh a small aperture
and their reception on a surface.

From these we can provide our own de nition:

De nition 3 | understand an image:

(1) to perceive the meaning behind the formation of the image

(2) to systematically interpret the causes|the physical objects and events|that resulted
in the formation of the image.

This de nition is not perfect, but it gives us a scope for this thesis. From this, it is
easy to see how vast the task of understanding an image can be. Given théxpls, one
would have to infer all the causes that led to this image: lighting condtions, exact list
of all objects present in the receptive eld, their exact 3D positions, contours, colors,

surface normals. ..
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In this thesis | focus on a subset of these explaining factors, whiicis commonly

referred to as semantic labeling, or image parsing:

De nition 4 | parse an image:
given an image (an array of pixels), produce a 2D map (in the plane ofhe image) of
objects, with their precise contour, position, and label (from a pe-de ned label set).

The task of image parsing is signi cantly simpler than the task of full image under-
standing, and yet captures most of its fundamental problems: represdation, recogni-
tion, segmentation. ..

The core of my thesis can be broken up into three main contributions:

1. amultiscale deep convolutional network architecture to easily captire long-distance
relationships between input variables in image data. This type of modeproduces
invariant yet spatially accurate features, which provide a good basisfor image

parsing,

2. a tree-based algorithm to e ciently explore multiple segmentation candidates,
to produce maximally con dent semantic segmentations of images. Thisype of
method is computationally e cient, and provides a simple-to-use post-processing

framework for image parsing,

3. a custom data ow computer architecture optimized for the computation of con-
volutional networks, and similarly dense image processing models. His computer

is fully implemented and functional.

The goal of this introduction is to put each contribution in perspective, and better
understand where they come from, with one section per contribution. | start with a
review of representation learning using deep networks. The seconskection provides
context on the problem of structured prediction, and the use of segmeation trees.
The third section describes data ow computers, and why they are partcularly well

suited compute models for data-intensive tasks such as image parsing.



1.1 Representation Learning with Deep Networks

1.1 Representation Learning with Deep Networks

\Deep learning is just a buzzword for neural nets,
and neural nets are just a stack of matrix-vector
multiplications, interleaved with some
non-linearities. No magic there."

| Ronan Collobert, 2011 (24)

One of the key questions of Vision Science (natural and arti cial) is howto produce
good internal representations of the visual world. What sort of internal representation
would allow an arti cial vision system to detect and classify objects into categories,
independently of pose, scale, illumination, conformation, and clutte? More interest-
ingly, how could an arti cial vision system learn appropriate internal representations
automatically, the way animals and humans seem to learn by simply lookig at the
world? In the time-honored approach to computer vision (and to pattern recognition
in general), the question is avoided: internal representations are n@pduced by a hand-
crafted feature extractor, whose output is fed to a trainable classi . While the issue
of learning features has been a topic of interest for many years, considible progress
has been achieved in the last few years with the development of so-catl deep learning
methods.

Good internal representations are hierarchical. In vision, pixelsare assembled into
edglets, edglets into motifs, motifs into parts, parts into objects and objects into
scenes. This suggests that recognition architectures for vision (andf other modalities
such as audio and natural language) should have multiple trainable stages atked on
top of each other, one for each level in the feature hierarchy. Deep near networks
are particularly well suited to represent hierarchical signals, as lhe overall function
is naturally decomposed into a hierarchy of simpler, linear functiors. Convolutional
neural networks are an extension of deep neural networks, in which eadhayer imposes
spatial (or temporal) replication of the weights, to exploit the stationar ity and locality
of the signal at each layer.

1.1.1 Deep Network Architectures

In this section | review well-known deep network architectures



1. INTRODUCTION

1.1.1.1 Multilayer Perceptrons

The rst deep network, or deep learner, was the multilayer percegpron (MLP). An MLP
typically consists of multiple layers of nodes arranged in a directd graph, with each
layer fully connected to the next one. A node, or neuron at each layers produced by
a non-linear activation function of a linear combination of activations at the previous
layer.

Mathematically, an MLP with L layers can be described by these simple equations:

y=1f(x; )= h; (1.1)
hy=act;(W,h, 1+ b)) 8 12f1:::;L 1g; (1.2)
ho = X; (1.3)

with b, a vector of trainable bias parameters,W | a matrix of trainable weights, x is the

input vector, y is a vector of output units, is a vector that represents all the trainable

layer I.

The most commonly used activation function for the hidden units ac{ 8 | 2
f1;:::;L 1g) is tanh, but other more exotic transfer functions, such as the rectied
linear unit (ReLU) can be used to e ectively train deeper architectures. The output
activation function act, depends on the problem at hand. For regression problems, it
can be a simple linear function, or a log-linear function. For discrimnation problems,
the softmax function is the most widely used, for its connection to maxmum a poste-
riori probability (MAP) estimation. The softmax normalizes the output u nits so that
they sum to 1, which turns the MLP into an approximator for the posterior probability
P(Y = t"jx"; ). When using a softmax activation function, the training procedure
becomes analogous to MAP estimation in the sense that we seek the trainingarameter
vector that maximizes the likelihood over all training samplesfx";t"g.

Note: some textbooks consider the input vectorx as a layer. In this thesis |
only count the hidden layers and the output layer. This way, a simgde linear model
is considered a one-layer model, whereas the smallest MLP is consir@d a two-layer
model (with one hidden layer). E ectively, I'm counting each li near projection as a
layer.
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1.1.1.2 Convolutional Networks

Many successful object recognition systems use dense features radted on regularly-
spaced patches over the input image. The majority of the feature extaction systems
have a common structure composed of a lter bank (generally based on ori¢ed edge
detectors or 2D gabor functions), a non-linear operation (quantization, wimer-take-all,
sparsi cation, normalization, and/or point-wise saturation) and nally a po oling oper-
ation (max, average or histogramming). For example, the scale-invariant feaire trans-
form (SIFT (73)) operator applies oriented edge lters to a small patch and determines
the dominant orientation through a winner-take-all operation. Finally, t he resulting
sparse vectors are added (pooled) over a larger patch to form local orieation his-
tograms. Some recognition systems use a single stage of feature extracto8( 60, 87).
Other models like HMAX-type models (77, 93) and convolutional networks usewo or
more layers of successive feature extractors.

Put simply, Convolutional Networks (64, 65), or ConvNets are an extension of mu
tilayer perceptrons, where the basic linear layers are replacedybconvolutional layers.
Non-linear activations are commonly followed by a spatial pooling function which en-
forces low-level shift invariance.

Mathematically, a ConvNet with L layers can be described as an MLP, where we

write the states as matrices (or more precisely arrays, or collectionsf vectors):

Y = f(X; )= Hy; (1.4)
H, =pool(acty(W |H; 1+ Dby)) 8 [2f1;:::;L 1g; (1.5)
Ho= X; (1.6)

with b, a vector of trainable bias parameters,W | a matrix of trainable weights, X is
the input array of vectors (an image is an array of pixels),Y is an array of output
vectors (each vector encodes a sub-window of the input), is a vector that represents

function at layer |, and pooj is a pooling function at layer I.
The major di erence with the MLP is that the matrices W | are Toeplitz matrices,
therefore each hidden unit arrayH, can be expressed as a regular convolution between

kernels from W | and the previous hidden unit vector H, 1, squashed through an aqt
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function, and pooled spatially. More speci cally,

Hp = pool(act( by + X Wipg Hi 19): (1.7)
g2 parents(p)

The hidden units H, are commonly calledfeature vector maps and H, is called
a feature map Concretely, if the input is a color image, each feature map would be
a 2D array containing a color channel of the input image (for an audio input eab
feature map would be a 1D array, and for a video or volumetric image, it wouldbe a
3D array). At the output, each feature map represents a particular feaure extracted
at all locations on the input.

From the mathematical description above, we can identify three key liilding blocks
of ConvNets: the convolutional layer, or Iter bank layer, the activation function, or
non-linearity layer, and the pooling function, or feature pooling layer A typical Conv-
Net is composed of one, two or more such 3-layer stages. The output of a ConvNet
is usually fed into an simple linear classi er, or, more generally inb an MLP. From
the training/optimization point of view, the complete stack (ConvNet+MLP ) can be
treated as an MLP: for discriminative tasks, the usual softmax activation function is
used as the output activation module, so that the optimization becomes aVAP esti-
mation problem.

We now describe these three building blocks, which are used #nsively throughout
this thesis (see Figure 1.1):

Filter Bank Layer -  F: the input is a 3D array with n; 2D feature mapsof size
n, nz. Each component is denotedxj , and each feature map is denotek;. The
output is also a 3D array, y composed ofm; feature maps of sizen, ma3s. A trainable
Iter (kernel) kj in the Iter bank has size I; |, and connects input feature mapx; to

output feature map y;. The module computesy; = by + ki Xi where is the 2D

[
discrete convolution operator andly is a trainable bias parameter. Each lIter detects a
particular feature at every location on the input. Hence spatially translating the input
of a feature detection layer will translate the output but leave it ot herwise unchanged.
Non-Linearity Layer : In traditional ConvNets this simply consists in a pointwise
tanh() sigmoid function applied to each site (jk ). However, recent implementations
have used more sophisticated non-linearities. A useful one for nataf image recognition

is the recti ed sigmoid Rgps: abs(gi:tanh()) where g; is a trainable gain parameter. The
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Figure 1.1: Common ConvNet Blocks - Architecture of a typical convolutional
network for object recognition. This implements a convolutional feature extractor and a
linear classi er for generic N-class object recognition. Once trainedthe network can be
computed on arbitrary large input images, producing a classi cation map asoutput.

recti ed sigmoid is sometimes followed by a subtractive and divisve local normalization
N, which enforces local competition between adjacent features in a&ture map, and be-
tween features at the same spatial location. The subtractive normalizaibn operation for
a given sitexjjx computes: Vix = Xik P inq Wpa:Xij + pik+ q» where wpq is a normalized
truncated Gaussian weighting window (typically of size 9x9). The divsive normaliza-
tion computes yjk = Vijk =max(mean( j); k) where j = (P ing wpq:vi?j +pikt q)1:2_
The local contrast normalization layer is inspired by visual neurosognce models (74, 87).
Feature Pooling Layer : This layer treats each feature map separately. In its
simplest instance, calledP,a, it computes the average values over a neighborhood in
each feature map. The neighborhoods are stepped by a stride larger thaf (but
smaller than or equal to the pooling neighborhood). This results in aeduced-resolution
output feature map which is robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced by a m#, . Traditional
ConvNets use a pointwisetanh() after the pooling layer, but more recent models do
not. Some ConvNets dispense with the separate pooling layer entirgl but use strides

larger than one in the Iter bank layer to reduce the resolution (63, 96). In some recent
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versions of ConvNets, the pooling also pools di erent features at a samcation, in
addition to the same feature at nearby locations (54).

(A Short History of ConvNets)

ConvNets can be seen as a representatives of a wide class of models that will
call Multi-Stage Hubel-Wiesel Architectures The idea is rooted in Hubel and Wiesel's
classic 1962 work on the cat's primary visual cortex. It identi ed orientation-selective
simple cellswith local receptive elds, whose role is similar to the ConvNets Iter
bank layers, and complex cells whose role is similar to the pooling layers. The rst
such model to be simulated on a computer was Fukushima's Neocognitror8g), which
used a layer-wise, unsupervised competitive learning algorithnfior the Iter banks, and
a separately-trained supervised linear classi er for the output layer. The innovation
in (63, 64) was to simplify the architecture and to use the back-propagationalgorithm
to train the entire system in a supervised fashion. The approach wasery successful for
such tasks as OCR and handwriting recognition. An operational bank check rading
system built around ConvNets was developed at AT&T in the early 1990's (65). t
was rst deployed commercially in 1993, running on a DSP board in check-eading
ATM machines in Europe and the US, and was deployed in large bank check agling
machines in 1996. By the late 90's it was reading over 10% of all the checks in ¢hUS.
This motivated Microsoft to deploy ConvNets in a number of OCR and handwriting
recognition systems (18, 19, 96) including for Arabic (1) and Chinese characts (17).
Supervised ConvNets have also been used for object detection in imagencluding faces
with record accuracy and real-time performance (40, 80, 84, 101), Google recewtl
deployed a ConvNet to detect faces and license plate in StreetViewriages so as to
protect privacy (37). NEC has deployed ConvNet-based system in Japan forracking
customers in supermarket and recognizing their gender and age. Vidierifechnologies
has developed a ConvNet-based video surveillance system deployiedseveral airports in
the US. France Teecom has deployed ConvNet-based face detection syems for video-
conference and other systems (40). Other experimental detection aflipations include
hands/gesture (82), logos and text (29). A big advantage of ConvNets for detectiond
their computational e ciency: even though the system is trained on small windows, it
su ces to extend the convolutions to the size of the input image and replicate the output
layer to compute detections at every location. Supervised ConvNethave also been used
for vision-based obstacle avoidance for o -road mobile robots (67). Two partigpants
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in the recent DARPA-sponsored LAGR program on vision-based navigation for o -
road robots used ConvNets for long-range obstacle detection (45, 46). In (45), the
system is pre-trained o -line using a combination of unsupervisedearning (as described
in section 3.2.2) and supervised learning. It is then adapted on-line, ashe robot
runs, using labels provided by a short-range stereovision systeifsee videos athttp://
www.cs.nyu.edu/ ~yann/research/lagr ). Interesting new applications include image
restoration (50) and image segmentation, particularly for biological images (81). he
big advantage over graphical models is the ability to take a large context widow into
account. Stunning results were obtained at MIT for reconstructing neuronal circuits
from a stack of brain slice images a few nanometer thick (51).

Over the years, other instances of the Multi-Stage Hubel-Wiesel Archiecture have
appeared that are in the tradition of the Neocognitron: unlike supervisel ConvNets,
they use a combination of hand-crafting, and simple unsupervised mébds to design
the Iter banks. Notable examples include Mozer's visual models (75),and the so-
called HMAX family of models from T. Poggio's lab at MIT (77, 93), which uses
hard-wired Gabor lters in the rst stage, and a simple unsupervised random template
selection algorithm for the second stage. All stages use point-wise nomkarities and
max pooling. From the same institute, Pinto et al. (87) have identied the most
appropriate non-linearities and normalizations by running systematicexperiments with
a single-stage architecture using GPU-based parallel hardware.

1.1.1.3 Encoders + Decoders = Auto-encoders

Training deep, multi-stage architectures using supervised gradint back propagation
requires many labeled samples. However in many problems labeled datia scarce
whereas unlabeled data is abundant. Recent research in deep leargir(7, 48, 88) has
shown that unsupervised learningcan be used to train each stage one after the other
using only unlabeled data, reducing the requirement for labeled saples signi cantly.
Learning features in an unsupervised manneri(e. without labels) can be achieved
simply, by using auto-encoders. An auto-encoder is a model that take a vector input
y, maps it into a hidden representation z (code) using an encoder which typically has

the form:

z=act(W ey + bg); (1.8)
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where act is a non-linear activation function, W ¢ the encoding matrix and b, a vector
of bias parameters.

The hidden representationz, often called code, is then mapped back into the space
of y, using a decoder of this form:

y= Wyz+ by (1.9)

where W 4 is the decoding matrix and by a vector of bias parameters.

The goal of the auto-encoder is to minimize the reconstruction error, Wich is rep-
resented by a distance betweery and y. The most common type of distance is the
mean squared erroljjy  yij3.

The code z typically has less dimensions thany, which forces the auto-encoder to
learn a good representation of the data. In its simplest form (linear),an auto-encoder
learns to project the data onto its rst principal components. If th e codez has as many
components asy, then no compression is required, and the model could typically eth
up learning the identity function. Now if the encoder has a non-linear form (using a
tanh, or using a multi-layered model), then the auto-encoder canéarn a potentially
more powerful representation of the data.

Basic auto-encoders require a number of tricks ancknow howto properly train
them, and avoid the pitfall of learning the identity function. In pr actice, using a codey
that is smaller than x is enough to avoid learning the identity, but it remains hard to do
much better than PCA. Techniques like the denoising auto-encode(DAE), introduced
in (102) can be useful to avoid that.

Using codes that are over-completei(e. with more components than the input)
makes the problem even worse. There are di erent ways that an auto-erader with an
over-complete code may still discover interesting represeations. One common way is
the addition of sparsity: by forcing units of the hidden representaton to be mostly 0s,
the auto-encoder has to learn a distributed representation of the ded. More advanced
methods, such as Predictive Sparse Coding (PSD) (53), involve leaing an encoder
that approximates the exact result of sparse coding. Sparse Coding came a bit costly,
as it is an iterative procedure, whereas the encoder will predicthe sparse code in a
feedforward way.

The auto-encoder loss can be used by itself for purely unsupervidepre-training.
The parameters are then used to initialize the supervised procade. It can also be

10
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used in conjunction with the supervised training, to ensure that there is no loss of
information at each layer: if the auto-encoder loss is perfectly mininized, it means
that the top layer representation contains all the information required to rebuild the
input signal. This can be useful for tasks where certain labels haveob few training
examples, such that it is dangerous to rely on the label information alone.

1.1.2 Learning: Parameter Estimation

In this thesis | focus on deep networks for discriminative tasks. Therefore, | will only
consider learning (parameter estimation) for discriminative tasks.

1.1.2.1 Loss Function, Objective

From the point of view of parameter estimation, the architecture of the model can
usually be abstracted. In the following, we assume a training set oN training samples
fx";t"g, with x" an input example, andt" a target value, or label, associated to that

example;t" 2 1;:::;K g, with K the number of possible target classes. We can write
y"=f(x"; ) 8 n2f1:::;Ng; (1.10)
I(f;x™t"; )= 1(f(x"; );t") 8 n2fl:::;Ng (1.11)
X
L(f;x;t; )= I(f;x";t"; ) (1.12)
n2f 1;:5N g

wheref is a model with trainable parameters , | is a loss function which captures the
per-sample objective to be optimized, andL the global loss function which represents
the overall objective to be optimized.

As described in Section 1.1.1, the use of a softmax output activation funéon allows
us to turn the learning problem into a likelihood maximization problem, or negative
log-likelihood minimization problem, which gives:

I(f(x™; );t") = log(P(Y = t"jx"; )) (1.13)
= log(f (x™): (1.14)

There are several other types of possible loss functions, but the nega¢ log-
likelihood (NLL) provides a simple and consistent parameter estimaton framework,
in which the outputs of f are properly calibrated units.

11
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1.1.2.2 Optimization

Once a modelf and a loss function| have been chosen, we can de ne the task of
learning, or parameter estimation, as minimizing the loss functionL over the training
setfx";t"g 8 n 2 f1;:::;Ng. If f and | are dierentiable, or at least piece-wise
di erentiable, this optimization can be cast as a gradient descent praedure.

The most naive way to go about solving this optimization problem is to compute
the derivative of the loss function with respect to all the trainable parameters (using
the well-known backpropagationalgorithm), over the complete training set, and then
follow the opposite direction to update the parameters. It is naive fortwo reasons: (1)
it only relies on rst order information (the gradient), (2) it relies on the entire dataset
to evaluate the gradient (full batch), which is typically extremel y ine cient.

The rst point can be addressed using parameter normalization, hiddenunit nor-
malization, (partial) second-order information. .. Di erent types of n ormalizations are
presented throughout this thesis.

The second point is typically addressed using a stochastic appromiation of the
gradient, usually referred to as stochastic gradient descent (SGD)The most extreme
form of SGD is when a single sampld x";t"g is used to estimate the gradient, and
to update the parameters. We usually use the term mini-batch to desribe the set of
samples used to evaluate the gradient and update the parameters. The mitbatch size
can vary from 1 (pure SGD) to N (batch method, or exact method).

All the algorithms presented in this thesis rely on some form of stochatcity. Several
studies (11, 12, 13) have shown that even wheh is a convex function with respect to the
trainable parameters, SGD yields signi cantly faster convergence, ad when combined
to a proper learning rate schedule and/or validation scheme, reaches thsame accuracy
as exact methods. SGD was used extensively in this thesis.

1.2 Hierarchical Segmentations, Structured Prediction

The focus of this thesis is on image understanding, and more precisebn image parsing,
or multi-label segmentation. Although it is theoretically doable to buil d a deep model
f which can remap a raw image signalX into a map of discrete labels, the use of
heuristics|candidate segmentations|can greatly speedup the learning process, and
the overall consistency of image labelings.

12
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In this section | provide material and context for Chapter 2. | start wit h an intro-
duction on hierarchical segmentations, which are used throughout Chapte2. | then
present the general ideas of structured prediction, a good paradigm fosequence data

and spatial data labeling problems.

1.2.1 Hierarchical Segmentations

An image segmentation is a partitioning of an image into regions correspondingo
di erent objects. A hierarchical image segmentation is an ensemble ofrhage segmen-
tations where the image segments are arranged in a tree-like structureThe root of the
tree is a single segment that spans all the pixels of the image, and thedees of the
tree are the individual pixels (one component per pixel). This type of data structure
is particularly useful to explore di erent levels of candidate segnentations.

In this section, | describe the basics required to build graphs onmages, and produce

hierarchical segmentations on these graphs.

1.2.1.1 Graph Representation

A graph G is de ned by a set of verticesV and a set of edges that connect the
vertices. In this thesis, we use the convention of edge-weightedindirected graphs, to
represent images: a pixel is represented by a vertex, and a linkdiween two pixels is
represented by a weighted edge.

A complete graph over an image is de ned when each pixel is connected tevery
other pixel in the image. Such graph is typically very costly to represent in memory,
as its number of edges scales quadratically with the number of pixels.

A much more common type of graph is locally connected: each pixel is conoted
to its most immediate 4 neighbors (4-connexity) or its 8 immediate neghbors (8-
connexity), as shown on Figure 1.2.

A very simple and natural kind of graph is a gradient graph: such a graph can be
built by setting the connexity to 4, and assigning each edge a weight tht is the Eu-
clidean distance between its two neighboring vertices. This graplepresents a gradient

map: each edge encodes a distance between pixels, as shown on Figufe 1.

13
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Figure 1.2: Graphs with local connectivity - Left: 4-connexity. Right: 8-connexity.
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Figure 1.3: Gradient graph - This type of graph is edge-weighted. Left: vertices,

with weights attached. Right: the edge-weighted gradient graph|each edge has a weight
associated, which is produced by the distance between its two fghboring vertices.
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1.2.1.2 Minimum Spanning Trees

Once a graph is constructed over an image, we can start thinking about tres. A
spanning tree of a graphG is itself a graph T, that contains all the vertices of G but

a subset of the edges inG that span all the vertices. For a given graph G over an
image, there are multiple possible spanning trees. A minimum sparing tree Tyst of
an edge-weighted graphG is the subset of edges chosen such that they minimize the
sum of the edge weights. A key property of spanning trees is that theyantain no loops
(which is why they are called trees!).

0.2 0.1 0.1

o —0o—¢ ®
0.3 0.1 0.1 0.1
0.2 0.1 0.1
® @ ®
0.1 0.2 0.1 0.1
0.2 0.1 0.1
® @ ® ®
0.1 0.0 0.0 0.1
0.3 0.1 0.2
® @ @ @
Figure 1.4: Minimum Spanning Tree of a Graph - Left: highlighting a possible MST

for the graph in Figure 1.2. Right: pruning the graph to only keep the edgeshelonging to
the MST|these edges cover the graph.

There are multiple well-known algorithms for nding MSTs. One of th em is Kruskal's
algorithm (56, 79), which constructs the MST by sorting all the edges by ircreasing
weight, and adds them one by one if they do not create cycles. The algorith main-
tains a list of clusters, and ensures that each time it adds an edge to #h MST, the
edge fuses two distinct clusters (if the two neighboring verties already belonged to
the same cluster, then adding that extra edge would create a cycle).Thus the only
challenge of the Kruskal algorithm is to e ciently keep track of the clu sters. Using
disjoint sets and path compression, the overall complexity of the algothm can be kept
to O(JEj: (JE])), where JE]j is the number of edges in the graph, and (:) is the inverse
Ackermann function, a function that grows very slowly with its argument. In other
terms, the Kruskal algorithm is roughly linear in the number of edges, wen correctly
implemented.

This is an important conclusion, as it tells us that we can compute minimrum span-

ning trees very cheaply.

15



1. INTRODUCTION

1.2.1.3 Dendograms

A minimum spanning tree is an e cient data structure to access a grid of pixels, and
have them organized by increasing edge weights. But the minimum spamng tree is in
fact more informative: it actually captures a full segmentation hierarchy. To see that,
the spanning tree must be visualized using a dendogram. A dendogram is rooted
binary tree whose leaf nodes consist of the objects being clustereth our case the
pixels (vertices of the graph). Each internal node of the dendogram regesents a cluster
corresponding to all its child leaf nodes. These nodes have a one-bne correspondance
with the edges of the MST, and the height of each internal node represgs the weight
of the edge in the MST! See Figure 1.5.

Concretely, looking at the dendogram of a gradient graph built on an image show
(1) high nodes corresponding to strong edges in the image, and (2) low ned corre-
sponding to at areas / edge-free areas in the image.

Figure 1.5: Dendogram of an MST - Left: a subset of the MST in Figure 1.4. Right:
its dendogram. The bottom nodes are the vertices in the original graph; tle blue nodes
represent merging levels.

1.2.1.4 Segmentations

Given a dendogram, a single segmentation of the image can be obtained very égsby
cutting the dendogram at a xed altitude, or threshold. After cutting the dendogram
at a xed altitude, we are left with a set of subtrees, called connecéd components.
These connected components cover the original image.€. each node in the original
graph belongs to one and only one component), and represent a possible segation
of the image. Intuitively, if the original edge weighting function is a simple Euclidean
distance between neighbors, that segmentation is very brittle, as itdepends on very
local edge information.
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"or ' 2o “loo
0.1
M o
Figure 1.6: Cutting the Dendogram = Segmenting - Left: two connected compo-

nents, obtained after thresholding at 0.15. Right: dendogram of MST, any no@ above the
threshold will be removed. the graph.

Alternatively, the dendogram can be Itered, according to criterions that depend
on the geometry of the underlying component (surface, volume, ...). €lzenszwalb &
Huttenlocher (35) proposed an interesting method to produce nal conponents, using a
criterion that compares the maximum weight within a component to each elge between
any two components, and have an adaptive threshold that depends on thisatio. The
method produces balanced segmentations which are robust to local n@s This type of
technique e ectively performs a non-horizontal cut of the hierarchy, taking into account
the local morphology of each subtree.

More advanced forms of thresholding criteria can even involve learnig. This can
be achieved by de ning a function over a neighborhood of pixels, tgproduce the edge
costs in such a way that graph-cut segmentation and similar methods prduce the
best answer. One such objective function is Turaga's Maximin Learning(100), which
pushes up the lowest edge cost along the shortest path between two mbé in di erent
segments, and pushes down the highest edge cost along a path betweerotpoints in
the same segment.

In this thesis | was mostly interested in using segmentation hierachies to explore a
large set of candidate segmentations in an e cient way. The focus of the hesis is thus
more on the use of such trees, as complements to feature learners, rattthan on their
production.

1.2.2 Structured Prediction

Structured prediction is a term that describes techniques thatinvolve predicting struc-
tured objects, i.e.considering output labels as inter-dependent, and explicitly maeling
this inter-dependence. One of the earliest structured prediton systems was proposed
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by LeCun et al. (65), to address the problem of labeling scanned documents. The
challenge there is that there is a joint problem of segmentation and recogtion: given
a long bitmap of characters, one must jointly nd the best segmentation into charac-
ters and classify each character. Any problem that involves labeling spience data can
be treated with the technique proposed in (65): speech recognition, atural language
processing, handwritten text recognition (OCR), music transcription. ..

For sequence data, one can easily produce all possible segmentations, arainpute
a unary cost for each segment. The Viterbi algorithm can then be used to m the
most likely sequence of labels.

For image labeling problems, segmentation becomes problematic, as thei®no way
to exhaustively explore all possible segmentation candidates: the grdpbeing loopy,
decoding has to be done in an approximate way, using techniques Bkloopy belief-

propagation, or graph cuts.

1.2.2.1 Graphical Models

Let us start with a general introduction of undirected graphical models for structured
prediction tasks. We assume a graphG = (V;E) with vertices i 2 V and edges
e2 E V V. The joint probability of a particular assignment to all the variables Xx;

is represented as a normalized product of a set of nhon-negative poteatifunctions:

Y Y
i(Xi) ek (Xj 3 Xk): (1.15)

2V e 2E

There is one node potential function ; for each nodei, and one edge potential ¢
for each edgee. Each edge connects two nodesg and ec. In a complete graph, there
is one edge between each possible pair of nodes. For common applicationacts as
computer vision, it's much more common to have locally connected grap$, i.e. graphs
in which only (small) subsets of nodes are connected via edges (seeeyious section).

The node potential function ;| gives a non-negative weight to each possible value
of the random variable x;. For example, we might set j(x; =0)to 0:75and (xj =1)
to 0:25, which means means that nodé has a higher potential of being in state 0 than
state 1. Similarly, the edge potential function ¢, gives a non-negative weight to all

the combinations that x; and x can take.
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The normalization constant Z, or partition function, is a scalar value that forces

the distribution to sum to one, over all possible joint con gurations of the variables:

X X XY

Y
Z= i(Xi) e (X3 Xk): (1.16)

X1 X2 Xjvji2V ek 2E
This normalizing constant ensures that the model de nes a valid prolability distri-
bution.
Given a graph G, there are three tasks that are commonly performed:

parameter estimation (learning): the task of computing the potential functions
that maximize the likelihood of the training data (or, given a prede ned function
parametrized by W, nding the optimal parameters W );

inference: the task of estimating the partition function Z as well as the marginal
probabilities of each node taking each possible state;

decoding: the task of nding the most likely joint con guration of the var iables
(the con guration that has the highest joint probability).

1.2.2.2 Learning: Parameter Estimation

As explained in Section 1.1, if we are only interested in discriminatn (classi cation),
Graphical models can be simpli ed by considering the negative log kelihood, and ig-
noring the normalization constant Z (which quickly becomes intractable and/or mean-
ingless for large problems). We de ne the energ\e /  log(p):
X X
E(X1;X2; 1005 Xjyj) = i(xi)+ e (Xj3XKk): (1.17)
i2v ek 2E
We assume that ; and  are prede ned functions (a linear model, a multilayer
perceptron, or a convolutional network), parametrized by a set of trainabde weightsw.
For stationary data (images, audio...), it is common to have models that are xed
across locations, and that only depend on their inputx; and the groundtruth label
t;. Since they are constant across locations, we can drop the subscriptsand e, and
rename them and , which are now functions ofx;, t; and w. We can rewrite the

energy as:

X X
E(x;t;w) = ( Xijti;w )+ e (X3 XKt W) (1.18)
i2v ek 2E
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where x is the vector of input nodes, andt is the vector of groundtruth labels for each
node. This energy is also known as the Conditional Random Field (CRF) eergy.

The parameter estimation task (learning) becomes a simple minimizatn problem,
similar to that described in Section 1.1. Reusing the same formulationand assuming

I(; ox™thw)= E(x™;t™w) 8 n2fl:iii:Ng (1.19)
X
L(; ;x:;t;w)= I(f;x™t" w): (1.20)

Depending on the forms of and , the overall objective L might be convex or
not. In the classical CRF literature, the potential functions are usually linear in their
parameters, so the overall problem is indeed convex. Optimization eltails presented in
Section 1.1.2.2 also apply here. In particular, stochastically estimahg the gradients
can tremendously accelerate the learning, as opposed to using more exanethods like
L-BFGS.

More generally, the potential functions can be arbitrarily complex non-convex func-
tions, for example, in the case of image labeling they could be full-blen convolutional
networks, which depend on a neighborhood of input variables. In thiscase, the over-
all objective function becomes non-convex, and the learning problemhallenging. A
simpler solution is to modularize the process of learning, and do itri two steps: (1)
train the unary potentials (the convolutional network) on individual in put samples; (2)
freeze the unary potential functions, pre-compute them for all imagesand learn the
CRF parameters (a convex problem). That second approach is the basis of Gipter 2.

One of the central results of this thesis is the fact that using a powrful node
potential, such as a multiscale convolutional network (as presented irChapter 2), can
greatly reduce the need for a top down, global CRF, as each node potential amages
to learn the structure of a large set of input variables.

1.3 Data ow Computing

The third contribution of this thesis is a custom data ow computer arc hitecture op-
timized for the computation of convolutional networks (such as the modelpresented
in Section 2). Data ow computers are a particular type of processing arbitecture,

which aim at maximizing the number of e ective operations per instruction, which in
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turn maximizes the number of operations reachable per second and per watonsumed.
They are particularly well t to the computation of convolutional network s, as these
require very little branching logic, and rather require tremendous quantities of basic,
redundant arithmetic operations.

In this section | provide a very quick primer on data ow computing and architec-
tures. As | suspect most readers of this thesis will come from a softwarbackground,
this section is rather high-level, with an emphasis on the compute mdel rather than
on the speci ¢ details of implementation. Chapter 3 extensively decribes our custom
data ow architecture.

Data ow architectures are a particular type of computer architecture that directly
contrasts the traditional von Neumann architecture or control ow archite cture. Data-
ow architectures do not have a program counter, or (at least conceptualyy) the execu-
tion of instructions is solely determined based on the availability ofinput data to the
compute elements.

Data ow architectures have been successfully implemented inecialized hardware
such as in digital signal processing (3, 85), network routing (5), graphicgrocessing (71,
92). It is also very relevant in many software architectures today induding database
engine designs and parallel computing frameworks (9, 10).

Before getting into the details of the data ow architecture, let us ook at the Von
Neumann architecture, which should help highlight the fundamental iortcomings of
traditional ow control for highly data-driven applications.

In this type of architecture, the control unit, which decodes the instructions and
executes them, is the central point of the system. A program (sequese of instructions)
is typically stored in external memory, and sequentially read into the control unit.
Certain types of instructions involve branching, while others involve reading data from
the memory into the arithmetic logic unit (ALU), to transform them, and w rite them
back into external memory.

When executing programs that are highly unpredictable in terms of brarching (pro-
grams that have many possible execution paths, with an essentially ufdrm probability
distribution), this type of architecture is optimal. The control un it loads one instruc-
tion per clock cycle, which either: (1) reads data into the ALU, (2) writes it back to

memory, (3) triggers an ALU operation on data that are already in local registers,or
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compute logic. When the data streams into the compute logic, computatios occur
continuously, and the processed data can be saved back into memory. hEre is no
ne grained, cycle-accurate control, rather the ows of data themselwes trigger the
computations.

The core of the architecture proposed in this thesis relies on thisdea of data-driven
computations, complemented by a powerful online hardware re-con guation system,
and a global, macroscopic control ow unit. Figure 1.8 provides an overvigv of this
architecture.

The most striking aspect of this architecture is the ratio betweenactual compute
logic and control+caching logic. Caching is essentially nil, as the entie architecture
is designed to work on streams: as the streams produce the computationthere is no
need for caching (there is no latency to hide, as the control unit work asynchronously).
The control logic is very sparse in its activity, as it is only here to recon gure the grid
of processing tiles (PTs on the gure): before scheduling any new amputation, it
con gures multiple tiles to perform given operations, and it also con gures all the
routes/connections between tiles and global data paths. Once the grid igon gured,
streams of data can come into it, and produce thousands, or millions of rests, before
a new con guration is required. Con gurations can be initiated in parallel with the
computations.

The Processing Tiles (PTs) are passive computers. Each tile can beon gured to
do one of several basic arithmetic tasks (including common DSP functins, like dot
products, and convolutions).

Chapter 3 provides a full description of this system.
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2

Image Understanding: Scene
Parsing

2.1 Introduction

Image understanding is a task of primary importance for a wide range of pragctal
applications. One important step towards understanding an image is to grform a full-
scene labelingalso known as ascene parsing which consists in labeling every pixel in
the image with the category of the object it belongs to. After a perfect scae parsing,
every region and every object is delineated and tagged. One challenge ofese parsing
is that it combines the traditional problems of detection, segmentation and multi-label
recognition in a single process.

There are two questions of primary importance in the context of scene arsing:
how to produce good internal representations of the visual informaibn, and how to use
contextual information to ensure the self-consistency of the intepretation.

2.2 A Model for Scene Understanding

2.2.1 Introduction

This chapter presents a scene parsing system that relies on deeparning methods
to approach both questions. The main idea is to use a convolutional netwdr (65)
operating on a large input window to produce label hypotheses for eachiyel location.
The convolutional net is fed with raw image pixels (after band-pass Itering and contrast
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2. IMAGE UNDERSTANDING: SCENE PARSING

normalization), and trained in supervised mode from fully-labeled mages to produce
a category for each pixel location. Convolutional networks are composed of mtiple

stages each of which contains a Iter bank module, a non-linearity, and aspatial pooling

module. With end-to-end training, convolutional networks can automatically learn

hierarchical feature representations.

Unfortunately, labeling each pixel by looking at a small region around it is di cult.
The category of a pixel may depend on relatively short-range information €.g. the
presence of a human face generally indicates the presence of a humandigamearby),
but may also depend on long-range information. For example, identifyinga grey pixel
as belonging to a road, a sidewalk, a gray car, a concrete building, or a cloy sky
requires a wide contextual window that shows enough of the surroundigs to make an
informed decision. To address this problem, we propose to use multi-scale convo-
lutional network, which can take into account large input windows, while keeping the
number of free parameters to a minimum.

Common approaches to scene parsing rst produce segmentation hypothes using
graph-based methods. Candidate segments are then encoded using aragred features.
Finally, a conditional random eld (or some other type of graphical model), is trained
to produce labels for each candidate segment, and to ensure that the lafings are
globally consistent.

A striking characteristic of the system proposed here is that the us of a large con-
textual window to label pixels reduces the requirement for sophsticated post-processing
methods that ensure the consistency of the labeling.

More precisely, the proposed scene parsing architecture is depéd on Figure 2.1.
It relies on two main components:

1) Multi-scale, convolutional representation . our multi-scale, dense feature
extractor produces a series of feature vectors for regions of multiplsizes centered
around every pixel in the image, covering a large context. The multiscale convolutional
net contains multiple copies of a simple network (all sharing the sameaveights) that are
applied to di erent scales of a Laplacian pyramid version of the input image. For each
pixel, the networks collectively encode the information presentin a large contextual
window around the given pixel (184 184 pixels in the system described here). The
convolutional network is fed with raw pixels and trained end to end, thereby alleviating
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2.b. Conditional random eld over superpixels : a conditional random eld
is de ned over a set of superpixels. Compared to the previous, sipier method, this
post-processing models joint probabilities at the level of the sage, and is useful to
avoid local aberrations (e.g. a person in the sky). That kind of approach is widely used
in the computer vision community, and we show that our learned multiscale feature
representation essentially makes the use of a global random eld much $s useful: most
scene-level relationships seem to be already captured by it.

2.c. Multilevel cut with class purity criterion : A family of segmentations
is constructed over the image to analyze the scene at multiple levsl In the simplest
case, this family might be a segmentation tree; in the most general casé ¢an be any
set of segmentations, for example a collection of superpixels eithergduced using the
same algorithm with di erent parameter tunings or produced by di ere nt algorithms.
Each segmentation component is represented by the set of feature vews that fall into
it: the component is encoded by a spatial grid of aggregated feature vectorsThe ag-
gregated feature vector of each grid cell is computed by a component-wisaax pooling
of the feature vectors centered on all the pixels that fall into the grd cell. This pro-
duces a scale-invariant representation of the segment and its surroaling. A classi er
is then applied to the aggregated feature grid of each node. This classireis trained
to estimate the histogram of all object categories present in the componén A subset
of the components is then selected such that they cover the entireanage. These com-
ponents are selected so as to minimize the average \impurity" of the lass distribution
in a procedure that we name \optimal cover". The class \impurity" is de ned as the
entropy of the class distribution. The choice of the cover thus attenpts to nd a con-
sistent overall segmentation in which each segment contains pixelsdionging to only
one of the learned categories. This simple method allows us to considgull families of
segmentation components, rather than a unique, predetermined segmtation (e.g. a

single set of superpixels).

All the steps in the process have a complexity linear (or almost linar) in the num-
ber of pixels. The bulk of the computation resides in the convolutionalnetwork feature
extractor. The resulting system is very fast, producing a full parse of a 320 240 image

in less than a second on a conventional CPU, and in less than 100ms using dedied
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hardware, opening the door to real-time applications. Once trained, he system is pa-
rameter free, and requires no adjustment of thresholds or other knobs

An early version of this work was rst published in (34). This journal ver sion reports

more complete experiments, comparisons and higher results.

2.2.2 Multiscale feature extraction for scene parsing

The model proposed in this chapter, depicted on Figure 2.1, relies onato complemen-
tary image representations. In the rst representation, an image patch 5 seen as a
point in RP, and we seek to nd a transformf : R | RQ that maps each patch
into RQ, a space where it can be classi ed linearly. This rst representaton typically
su ers from two main problems when using a classical convolutional netork, where
the image is divided following a grid pattern: (1) the window consideed rarely contains
an object that is properly centered and scaled, and therefore o ers a par observation
basis to predict the class of the underlying object, (2) integratinga large context in-
volves increasing the grid size, and therefore the dimensionality? of the input; given
a nite amount of training data, it is then necessary to enforce some inariance in the
function f itself. This is usually achieved by using pooling/subsampling lagrs, which
in turn degrades the ability of the model to precisely locate and deheate objects. In
this chapter, f is implemented by a multiscale convolutional network, which allows
integrating large contexts (as large as the complete scene) into local disions, yet still
remaining manageable in terms of parameters/dimensionality. This muliscale model,
in which weights are shared across scales, allows the model to captukeng-range in-
teractions, without the penalty of extra parameters to train. This mo del is described
in Section 2.2.2.1.

In the second representation, the image is seen as an edge-weighted graph which
one or several over-segmentations can be constructed. The componentgapatially ac-
curate, and naturally delineate the underlying objects, as this repesentation conserves
pixel-level precision. Section 2.2.3 describes multiple stragges to combine both repre-
sentations. In particular, we describe in Section 2.2.3.3 a method foanalyzing a family
of segmentations (at multiple levels). It can be used as a solution to te rst problem
exposed above: assuming the capability of assessing the quality of alhé components
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in this family of segmentations, a system can automatically choose its coponents so

as to produce the best set of predictions.

2.2.2.1 Scale-invariant, scene-level feature extraction

Good internal representations are hierarchical. In vision, pixelsare assembled into
edglets, edglets into motifs, motifs into parts, parts into objects and objects into
scenes. This suggests that recognition architectures for vision (andf other modalities
such as audio and natural language) should have multiple trainable stages atked on
top of each other, one for each level in the feature hierarchy. Convolutioal Networks
(ConvNets) provide a simple framework to learn such hierarchies ofdatures.

Convolutional Networks (64, 65) are trainable architectures composed of mulple
stages. The input and output of each stage are sets of arrays callegature maps For
example, if the input is a color image, each feature map would be a 2D arrayontaining
a color channel of the input image (for an audio input each feature map would b a 1D
array, and for a video or volumetric image, it would be a 3D array). At the output,
each feature map represents a particular feature extracted at all locabns on the input.
Each stage is composed of three layers: #er bank layer, a non-linearity layer, and a
feature pooling layer A typical ConvNet is composed of one, two or three such 3-layer
stages, followed by a classi cation module. Because they are trainabjarbitrary input
modalities can be modeled, beyond natural images.

Our feature extractor is a three-stage convolutional network. The rst two stages
contain a bank of Iters producing multiple feature maps, a point-wise non-linear map-
ping and a spatial pooling followed by subsampling of each feature map. fie last layer
only contains a bank of lters. The lIters (convolution kernels) are subject to training.
Each lter is applied to the input feature maps through a 2D convolution op eration,
which detects local features at all locations on the input. Each Iter bank of a convo-
lutional network produces features that are equivariant under shifs, i.e. if the input is
shifted, the output is also shifted but otherwise unchanged.

While convolutional networks have been used successfully for a nuper of image
labeling problems, image-level tasks such as full-scene undersi@ing (pixel-wise label-
ing, or any dense feature estimation) require the system to model copiex interactions
at the scale of complete images, not simply within a patch. To view a largecontextual
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window at full resolution, a convolutional network would have to be unmanageably
large.

The solution is to use a multiscale approach. Our multiscale convolutbnal network
overcomes these limitations by extending the concept of spatial wght replication to
the scale space. Given an input imagd, a multiscale pyramid of imagesXg; 8s 2

be a Laplacian pyramid, and is typically pre-processed, so that local eighborhoods
have zero mean and unit standard deviation. Given a classical convolutnal network
fs with parameters g, the multiscale network is obtained by instantiating one network
per scales, and sharing all parameters across scalesis = ¢; 8s2f1;:::;Ng.

We introduce the following convention: banks of images will be seen abree dimen-
sional arrays in which the rst dimension is the number of independent feature maps,
or images, the second is the height of the maps and the third is the width The output
state of the L-th stage is denotedH | .

The maps in the pyramid are computed using a scaling/normalizing functon gs as

For each scales, the convolutional network fs can be described as a sequence of
linear transforms, interspersed with non-linear symmetric squabking units (typically
the tanh function (66)), and pooling/subsampling operators. For a network f¢ with L

layers, we have:

fs(Xs; )= WLHL 15 (2.1)

where the vector of hidden units at layerl is

H, = pool(tanh( W |H| 1+ b)) (2.2)

forall | 2f1;:::;L 1g, with b, a vector of bias parameters, andHy = Xs. The ma-
trices W | are Toeplitz matrices, therefore each hidden unit vectorH| can be expressed
as a regular convolution between kernels fronW | and the previous hidden unit vector
H, 1, squashed through a tanh, and pooled spatially. More speci cally,

X
Hp = pool(tanh( b, + Wipg Hi 19)): (2.3)

g2 parents(p)
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The Iters W and the biasesb, constitute the trainable parameters of our model,
and are collectively denoted s. The function tanh is a point-wise non-linearity, while
pool is a function that considers a neighborhood of activations, and prodces one
activation per neighborhood. In all our experiments, we use a max-poaig operator,
which takes the maximum activation within the neighborhood. Pooling over a small
neighborhood provides built-in invariance to small translations.

Finally, the outputs of the N networks are upsampled and concatenated so as to
produce F, a map of feature vectors of sizeN times the size off;, which can be seen
as local patch descriptors and scene-level descriptors

F=[fyu(f2); o u(fN)l (2.4)

where u is an upsampling function.

As mentioned above, weights are shared between networks. Intuitively, imposing
complete weight sharing across scales is a natural way of forcing the neork to learn
scale invariant features, and at the same time reduce the chances of avdting. The
more scales used to jointly train the modeld s( s) the better the representation becomes
for all scales. Because image content is, in principle, scale invarianusing the same

function to extract features at each scale is a reasonable assumption.

2.2.2.2 Learning discriminative scale-invariant features

As described in Section 2.2.2.1, feature vectors ifr are obtained by concatenating the
outputs of multiple networks fs, each taking as input a di erent image in a multiscale
pyramid.

Ideally a linear classi er should produce the correct categorization ér all pixel lo-
cations i, from the feature vectors F;. We train the parameters ¢ to achieve this
goal, using the multiclasscross entropy loss function. Let ¢, be the normalized pre-
diction vector from the linear classi er for pixel i. We compute normalized predicted
probability distributions over classes €;.5 using the softmax function, i.e.

eW;Fi

Ci;a =P eWgFi ; (25)

b2 classes

where w is a temporary weight matrix only used to learn the features. The cross
entropy between the predicted class distribution€ and the target class distribution c
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penalizes their deviation and is measured by

X X
Leat = Cia IN(€ia): (2.6)

i2 pixels a2 classes
The true target probability c;., of classa to be present at locationi can either be
a distribution of classes at locationi, in a given neighborhood or a hard target vector:
Cia = 1 if pixel i is labeleda, and O otherwise. For training maximally discriminative
features, we use hard target vectors in this rst stage.
Once the parameters ¢ are trained, the classier in Eq 2.5 is discarded, and the

feature vectorsF; are used using di erent strategies, as described in Section 2.2.3.

2.2.3 Scene labeling strategies

The simplest strategy for labeling the scene is to use the linear aksi er described in
Section 2.2.2.2, and assign each pixel with thargmax of the prediction at its location.

More speci cally, for each pixel i

li =argmax €;4: (2.7)
a2classes
The resulting labeling |, although fairly accurate, is not satisfying visually, as it
lacks spatial consistency, and precise delineation of objects. In thisection, we explore

three strategies to produce spatially more appealing labelings.

2.2.3.1 Superpixels

Predicting the class of each pixel independently from its neighba yields noisy predic-
tions. A simple cleanup can be obtained by forcing local regions of same aolintensities
to be assigned a single label.

As in (39, 41), we compute superpixels, following the method proposedyb(35), to
produce an over-segmentation of the image. We then classify each locati of the image
densely, and aggregate these predictions in each superpixel, by contjng the average

class distribution within the superpixel.
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where kr 1k; is the ", norm of the gradient of the imagel at a pixel i. Details on the
parameters used are given in the experimental section.
The CRF energy (2.13) is minimized using alpha-expansions (15, 16). An illstra-

tion of the procedure appears in Figure 2.3.

2.2.3.3 Parameter-free multilevel parsing

One problem subsists with the two methods presented above: thebservation level
problem. An object, or object part, can be easily classi ed once it is segmented at
the right level. The two methods above are based on an arbitrary segmeation of the
image, which typically decomposes it into segments that are too smallor, more rarely,
too large.

In this section, we propose a method to analyze a family of segmentationand
automatically discover the best observation level for each pixel in tle image. One special
case of such families is the segmentation tree, in which components ahgerarchically
organized. Our method is not restricted to such trees, and can be usefor arbitrary
sets of neighborhoods.

In Section 2.2.3.3 we formulate the search for the most adapted neighborhdloof
a pixel as an optimization problem. The construction of the cost function that is

minimized is then described in Section 2.2.3.3.
Optimal purity cover We de ne the neighborhood of a pixel as a connected com-

connected components of the lattice de ned on imagé, and let Sy be a cost associated
to each of these components. For each pixel we wish to nd the index k (i) of the
component that best explains this pixel, that is, the component with the minimal cost
Sk (i):

k (i) = argmin Sy: (2.16)
kji2Cy

Note that components Cy () form a non-disjoint set that covers the lattice. The
set is always guaranteed to form a cover because of its de nition: eachixel is assigned
a component with minimal cost, therefore these components cover thentire image.

P o
Note also that the overall costS = ; S (i) is minimal.
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In practice, the set of componentsCy is too large, and only a subset of it can
be considered. A classical technique to reduce the set of componenis to consider
a hierarchy of segmentations (6, 78), that can be represented as a treeE. This was
previously explored in (34). Solving Eq 2.16 onT consists of the following procedure:
for each pixel (leaf)i, the optimal component Cy (;y is the one along the path between
the leaf and the root with minimal cost Sy (;). The optimal cover is the union of all
these components. For e ciency purposes, it can be done simply by eoring the
tree in a depth- rst search manner, and nding the component with minimal weight
along each branch. The complexity of the optimal cover procedure is thn linear in the
number of components in the tree. Figure 2.5 illustrates the procedre.

Another technique to reduce the set of components considered is toompute a
set of segmentations using di erent merging thresholds. In Sectior2.2.4, we use such
an approach, by computing multiple levels of the Felzenszwalb algoritm (35). The
Felzenszwalb algorithm is not strictly monotonic, so the structure oltained cannot be
cast into a tree: rather, it has a general graph form, in which each pixelbelongs to
as many superpixels as levels explored. Solving Eq 2.16 in this case s@ts of the
following procedure: for each pixeli, the optimal component Cy () is the one among
all the segmentations with minimal costSy (jy. Thus the complexity to produce a cover
on the family of components is linear on the number of pixels, but with aconstant that
is proportional to the number of levels explored.

Producing the con dence costs Given a set of componentsCy, we explain how
to produce all the con dence costsSi. These costs represent the class purity of the
associated components. Given the groundtruth segmentation, we can coroge the cost
as being the entropy of the distribution of classes present in the coponent. At test
time, when no groundtruth is available, we need to de ne a functionthat can predict
this cost by simply looking at the component. We now describe a way o&chieving this,
as illustrated in Figure 2.6.

Given the scale-invariant featuresF, we de ne a compact representation to describe
objects as an elastic spatial arrangement of such features. In other term@&n object,
or category in general, can be best described as a spatial arrangement of feads,
or parts. We de ne a simple attention function a used to mask the feature vector
map with each componentCy, producing a set of K masked feature vector patterns
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Figure 2.5: Optimal Cover on a Tree: - Finding the optimal cover on a tree. The
numbers next to the components correspond to the entropy scoreS;. For each pixel (leaf)
i, the optimal component C, (;) is the one along the path between the leaf and the root
with minimal cost S (j). The optimal cover is the union of all these components. In this
example, the optimal coverf Cy; C3; Cy4; Csg will result in a segmentation in disjoint sets
fC1; Cy; C3; Cy40, with the subtle di erence that component C, will be labelled with the
class ofCs, as Cs is the best observation level forC,. The generalization to a family of
segmentations is straightforward (see text).

fF T Ckg; 8k 2 f1;:::;Kg. The function a is called an attention function because
it suppresses the background around the component being analyzed. Theatterns
fF T Ckg are resampled to produce xed-size representations. In our modehe sam-
pling is done using an elastic max-pooling function, which remaps iput patterns of
arbitrary size into a xed G G grid. This grid can be seen as a highly invariant rep-
resentation that encodes spatial relations between an object's attribtes/parts. This
representation is denotedOy. Some nice properties of this encoding are: (1) elongated,
or in general ill-shaped objects, are nicely handled, (2) the dominantdatures are used
to represent the object, combined with background subtraction, thefeatures pooled
represent solid basis functions to recognize the underlying objéc

Once we have the set of object descriptor®y, we de ne a functionc: O ! [0; 1]Ne
(where N¢ is the number of classes) as predicting the distribution of classepresent in
component C,. We associate a costSy to this distribution. In this chapter, c is
implemented as a simple 2-layer neural network, andy is the entropy of the predicted
distribution. More formally, let Oy be the feature vector associated with component

Cy, Qi the predicted class distribution, and Sy the cost associated to this distribution.
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(]

F!' Ck———pooling >—-Ok

Figure 2.6: Max Sampling - The shape-invariant attention function a. For each com-
ponent Cy in the family of segmentations T, the corresponding image segment is encoded
by a spatial grid of feature vectors that fall into this segment. The aggregaed feature
vector of each grid cell is computed by a component-wise max pooling of thfeature vec-
tors centered on all the pixels that fall into the grid cell; this produces a scale-invariant
representation of the segment and its surroundings. The resultOy, is a descriptor that
encodes spatial relations between the underlying object's partsThe grid size was set to
3 3 for all our experiments.

Ck

We have
Yk = Wtanh(W 10 + bj); (2.17)
k;a
ak;a = Pey—k_b; (2.18)
b%&lassesey '
S = dica IN(8k;a); (2.19)
a2classes

with dy the groundtruth distribution for component k. Matrices W 1 and W , are noted
¢, and represent the trainable parameters ofc. These parameters need to be learned
over the complete set of segmentation families, computed on the entr training set
available. The training procedure is described in Section 2.2.3.3.
For each componentCy chosen by the optimal purity cover (Section 2.2.3.3) the

label is produced by:

Iy =argmax Qs Cy 2 cut: (2.20)
a2classes
Training procedure Let F be the set of all feature maps in the training set, and

T the set of all families of segmentations. We construct the segmentationatlections
(T)T271 on the entire training set, and, for all T 2 T train the classi er c to predict the

distribution of classes in componentCy 2 T, as well as the costsS.
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Given the trained parameters g, we build F and T, i.e. we compute all vector maps
F and segmentation collectionsT on all the training data available, so as to produce
a new training set of descriptorsOy. This time, the parameters . of the classier c
are trained to minimize the KL-divergence between the true (known) distributions of
labelsdy in each component, and the prediction from the classi erdy (Eq 2.18):

X a
kiay.
lgiv = ak;aln(d—a). (2.21)
a2classes kia
In this setting, the groundtruth distributions dy are not hard target vectors, but
normalized histograms of the labels present in component,. Once the parameters .
are trained, d accurately predicts the distribution of labels, and Eq 2.19 is used to

assign a purity cost to the component.

2.2.4 Experiments

We report our semantic scene understanding results on three di eznt datasets: \Stan-
ford Background" on which related state-of-the-art methods report clasi cation errors,
and two more challenging datasets with a larger number of classes: \SIFT lBw" and
\Barcelona". The Stanford Background dataset (42) contains 715 images of outdoor
scenes composed of 8 classes, chosen from other existing public datasso that all
the images are outdoor scenes, have approximately 320240 pixels, where each image
contains at least one foreground object. We use the evaluation proceduratroduced
in (42), 5-fold cross validation: 572 images used for training, and 143 for testingThe
SIFT Flow dataset (72) is composed of 2688 images, that have been thoroughly la-
beled by LabelMe users, and split in 2488 training images and 200 test images. The
authors used synonym correction to obtain 33 semantic labels. The Barceha dataset,
as described in (98), is derived from the LabelMe subset used in (90).t has 14,871
training and 279 test images. The test set consists of street scenesofn Barcelona,
while the training set ranges in scene types but has no street sces from Barcelona.
Synonyms were manually consolidated by (98) to produce 170 unique labels

To evaluate the representation from our multiscale convolutional netwok, we re-
port results from several experiments on the Stanford Background datage (1) a system

based on a plain convolutional network alone; (2) the multiscale convolutiomal network
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Pixel Acc. | Class Acc. | CT (sec.)
Gould et al. 2009 (42) 76.4% - 10 to 600s
Munoz et al. 2010 (76) 76.9% 66.2% 12s
Tighe et al. 2010 (98) 77.5% - 10 to 300s
Socheret al. 2011 (97) 78.1% - ?
Kumar et al. 2010 (57) 79.4% - < 600
Lempitzky et al. 2011 (70) 81.9% 72.4% > 60s
singlescale convnet 66.0 % | 56.5 % 0.35s
multiscale convnet 788 % | 72.4% 0.6s
multiscale net + superpixels | 80.4% | 74.56% 0.7s
multiscale net + gPb + cover | 80.4% | 75.24% 61s
multiscale net + CRF on gPb | 81.4% | 76.0% 60.5s

Table 2.1: Performance of our system on the Stanford Background dataset (42): per-pixe
[ average per-class accuracy. The third column reports compute timesas reported by the

authors. Our algorithms were computed using a 4-core Intel i7.

Pixel Acc. | Class Acc.
Liu et al. 2009 (72) 74.75% -
Tighe et al. 2010 (98) 76.9% 29.4%
raw multiscale net! 67.9% 45.9%
multiscale net + superpixelst 71.9% 50.8%
multiscale net + cover! 72.3% 50.8%
multiscale net + cover? 78.5% 29.6%

Table 2.2: Performance of our system on the SIFT Flow dataset (72): per-pixel / av-
erage per-class accuracy. Our multiscale network is trained using tasampling methods:
Ipalanced frequencies?natural frequencies. We compare the results of our multiscale net-
work with the raw (pixelwise) classi er, Felzenszwalb superpkels (35) (one level), and our
optimal cover applied to a stack of 10 levels of Felzenszwalb superpils. Note: the thresh-
old for the single level was picked to yield the best results; the aver automatically nds

the best combination of superpixels.
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presented in Section 2.2.2.1, with raw pixelwise prediction; (3) sperpixel-based pre-
dictions, as presented in Section 2.2.3.1; (4) CRF-based predictiongs presented in

Section 2.2.3.2; (5) cover-based predictions, as presented in Secti@r2.3.3.

Results are reported in Table 2.1, and compared with related works. Our radel
achieves very good results in comparison with previous approaches. KMwds of (57, 70)
achieve similar or better performances on this particular dataset but b the price of

several minutes to parse one image.

We then demonstrate that our system scales nicely when augmenting # number
of classes on two other datasets, in Tables 2.2 and 2.3. Results on these datswere
obtained using our cover-based method, from Section 2.2.3.3. Example pggs on the

SIFT Flow dataset are shown on Figure 2.9.

For the SIFT Flow and Barcelona datasets, we experimented with two ampling
methods when learning the multiscale features: respecting natal frequencies of classes,
and balancing them so that an equal amount of each class is shown to the netrk.
Balancing class occurrences is essential to model the conditionakélihood of each
class {.e. ignore their prior distribution). Both results are reported in Table 2.2.
Training with balanced frequencies allows better discrimination of small objects, and
although it decreases the overall pixelwise accuracy, it is more corot from a recognition
point of view. Frequency balancing is used on the Stanford Background datset, as it
consistently gives better results. For the Barcelona dataset, both ampling methods
are used as well, but frequency balancing worked rather poorly in thattase. This can
be explained by the fact that this dataset has a large amount of classes witkery few
training examples. These classes are therefore extremely hard toadel, and over tting

occurs much faster than for the SIFT Flow dataset. Results are showron Table 2.3.

Results in Table 2.1 demonstrate the impressive computational advantagef convo-
lutional networks over competing algorithms. Exploiting the parallel structure of this
special network, by computing convolutions in parallel, allows us to @rse an image of
size 320 240 in less than one second on a 4-core Intel i7 laptop. Using GPUs or other
types of dedicated hardware, our scene parsing model can be run in retiine (i.e. at

more than 10fps).
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Pixel Acc. | Class Acc.
Tighe et al. 2010 (98) 66.9% 7.6%
raw multiscale net! 37.8% 12.1%
multiscale net + superpixels' | 44.1% 12.4%
multiscale net + cover! 46.4% 12.5%
multiscale net + cover? 67.8% 9.5%

Table 2.3: Performance of our system on the Barcelona dataset (98): per-pixel / aver
age per-class accuracy. Our multiscale network is trained using twoasnpling methods:
'palanced frequencies?natural frequencies. We compare the results of our multiscale net-
work with the raw (pixelwise) classi er, Felzenszwalb superpkels (35) (one level), and our
optimal cover applied to a stack of 10 levels of Felzenszwalb superpils. Note: the thresh-
old for the single level was picked to yield the best results; the @ver automatically nds
the best combination of superpixels.

2.2.4.1 Multiscale feature extraction

For all experiments, we use a 3-stage convolutional network. The rst two layers of
the network are composed of a bank of Iters of size 7 7 followed by tanh units
and 2 2 max-pooling operations. The last layer is a simple lter bank. The lters
and pooling dimensions were chosen by a grid search. The input image fisansformed
into YUV space, and a Laplacian pyramid is constructed from it. The Y, U and V
channels of each scale in the pyramid are then independently locallgormalized, such
that each local 15 15 patch has zero-mean and unit variance. For these experiments,
the pyramid consists of 3 rescaled versions of the inputN = 3), in octaves: 320
240, 160 120, 80 60.

The network is then applied to each 3-dimension input mapXs. This input is
transformed into a 16-dimension feature map, using a bank of 16 Iters (1&onnected to
the Y channel, 6 connected to the U and V channels). The second laydransforms this
16-dimension feature map into a 64-dimension feature map, each map beingquuced
by a combination of 8 randomly selected feature maps from the previous igr. Finally
the 64-dimension feature map is transformed into a 256-dimension featureap, each
map being produced by a combination of 32 randomly selected feature magdsom the
previous layer.

The outputs of each of the 3 networks are then upsampled and concatenatedo
as to produce a 256 3 = 768-dimension feature vector mapF. Given the lter
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sizes, the network has a eld of view of 46 46, at each scale, which means that a
feature vector in F is in uenced by a 46 46 neighborhood at full resolution, a 92 92

neighborhood at half resolution, and a 184 184 neighborhood at quarter resolution.

These neighborhoods are shown in Figure 2.1.

The network is trained on all 3 scales in parallel, using stochastic graignt descent
with no second-order information, and mini-batches of size 1. Simple gu-search was
performed to nd the best learning rate (10 3) and regularization parameters (L2
coe cient: 10 °®), using a holdout of 10% of the training data for validation. The
holdout is also used to select the best networkj.e. the network that generalizes the
most on the holdout.

Convergence, that is, maximum generalization performance, is typicayl attained
after between 10 to 50 million patches have been seen during stochisgradient descent.
This typically represents between two to ve days of training. No special hardware
(GPUs) was used for training.

The convolutional network has roughly 0.5 million trainable parameters. To ensure
that features do not over t some irrelevant biases present in the daa, jitter { horizontal
ipping of all images, rotations between 8 and 8 degrees, and rescaling between 90 and
110% { was used to arti cially expand the size of the training data. These adlitional
distortions are applied during training, before loading a new training point, and are
sampled from uniform distributions. Jitter was shown to be crucial for low-level feature
learning in the works of (95) and (21).

For our baseline, we trained a single-scale network and a three-scalestwork as
raw site predictors, for each locationi, using the classi cation loss Ly de ned in
Eq 2.10, with the two-layer neural network de ned in Eq 2.9. Table 2.1 shavs the clear
advantage of the multi-scale representation, which captures scenevel dependencies,
and can classify more pixels accurately. Without an explicit segmentabn model, the
visual aspect of the predictions still su ers from inaccurate objectdelineation.

2.2.4.2 Parsing with superpixels

The results obtained with the strategy presented in section 2.2.3.1 émonstrate the
quality of our multiscale features, by reaching a very high classi caton accuracy on all
three datasets. This simple strategy is also a real t for real time applcations, taking
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only an additional 0.2 second to label a 320 240 image on Intel i7 CPU. An example
of result is given in Figure 2.7.

The 2 layer neural network used for this method (Eq 2.9) has 768 input units,1024
hidden units; and as many output units as classes in each dataset. Thisaural network
is trained with no regularization.

2.2.4.3 Multilevel parsing

Although the simple strategy of the previous section seems appealing, thresults can
be further improved using the multilevel approach of Section 2.2.3.3.

The family of segmentations used to nd the optimal cover could be a sinple seg-
mentation tree constructed on the raw image gradient. For the Stanford Bakground
dataset experiments, we used a more sophisticated tree based on a satic image
gradient. We used the gPb hierarchies of Arbelaezt al. , which are computed us-
ing spectral clustering to produce semantically consistent cordurs of objects. Their
computation requires one minute per image.

For the SIFT Flow and Barcelona datasets, we used a cheaper technique/hich does
not rely on a tree: we ran the superpixel method proposed by Felzeasvalb in (35) at 10
di erent levels. The Felzenszwalb algorithm is not strictly monotonic, so the structure
obtained cannot be cast into a tree: rather, it has a general graph form, in Wwich each
pixel belongs to 10 di erent superpixels. Our optimal cover algorithm can be readily
applied to arbitrary structures of this type. The 10 levels were closen such that they
are linearly distributed and span a large range.

Classically, segmentation methods nd a partition of the segments ratter than a
cover. Partitioning the segments consists in nding an optimal cut in a tree (so that
each terminal node in the pruned tree corresponds to a segment). Wexperimented
with graph-cuts to do so (14, 36), but the results were less accurate #n with our
optimal cover method (Stanford Background dataset only).

The 2 layer neural network ¢ from Eq 2.17 has 3 3 768 = 6912 input units
(using a 3 3 grid of feature vectors fromF), 1024 hidden units; and as many output
units as classes in each dataset. This rather large neural network is traed with L2
regularization (coe cient: 10 2), to minimize over tting.

Results are better than the superpixel method, in particular, bdter delineation is
achieved (see Fig. 2.7).
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2.2.4.4 Conditional random eld

We demonstrate the state-of-the-art quality of our features by employng a CRF on
the superpixels given by thresholding the gPb hierarchy, on the Sinford Background
dataset. A similar test is performed in Lempitsky et al. (70), where the authors also use
a CRF on the same superpixels (at the threshold 20 in the gPb hierarchy but employ
di erent features. Histograms of densely sampled SIFT words, colors,dcations, and
contour shape descriptors. They report a ratio of correctly classi edpixels of 811%
on the Stanford Background dataset. We recall that this accuracy is the besone has
achieved at the present day on this dataset with a at CRF.

In our CRF energy, we performed a grid search to set the parameters of (23)
( = 20, = 0:1 = 200), and used a grey level gradient. The accuracy of the
resulting system is 814, as reported in Table 2.1. Our features are thus outperforming

the best publicly available combination of handcrafted features.

2.2.45 Some comments on the learned features

With recent advances in unsupervised (deep) learning, learned &ures have become
easier to analyze and understand. In this work, the entire stack of featres is learned
in a purely supervised manner, and yet we found that the features oldined are rather
meaningful. We believe that the reason for this is the type of loss furkion we use, which
enforces a large invariance: the system is forced to produce an invart representation

for all the locations of a given object. This type of invariance is very smnilar to what

can be achieved using semi-supervised techniques such as Dr-LIi(d4), where the loss
enforces pairs of similar patches to yield a same encoding. Figure 2.18avs an example

of the features learned on the SIFT Flow dataset, for the rst layer.

2.2.4.6 Some comments on real-world generalization

Now that we have compared and discussed several strategies for scene $iag based on
our multiscale features, we consider taking our system in the real-orld, to evaluate its

generalization properties. The work of (99), measuring dataset bias, raisethe question
of the generalization of a recognition system learned on specic, publicly available

datasets.
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We used our multiscale features combined with classi cation using gperpixels as
described in Section 2.2.3.1, trained on the SiftFlow dataset (2,688 imagemost of them
taken in non-urban environments, see Table 2.2 and Figure 2.9). We colléed a 360
degree movie in our workplace environment, including a street and gark, introducing
di culties such as lighting conditions and image distortions: see Figure 2.11.

The movie was built from four videos that were stitched to form a 360 degee
video stream of 1280 256 images, thus creating artifacts not seen during training.
We processed each frame independently, without using any temporatonsistency or
smoothing.

Despite all these constraints, and the rather small size of the traimg dataset, we ob-
serve rather convincing generalization of our models on these previolysunseen scenes.
The two video sequences are available aittp://www.clement.farabet.net/research.html#parsin g.
Two snapshots are included in Figure 2.11. Our scene parsing system ctitutes at
the best of our knowledge the rst approach achieving real time perfornance, one
frame being processed in less than a second on a 4-core Intel i7. Featuextraction,
which represent around 500ms on the i7 can be reduced to 60ms using dealied FPGA
hardware (32, 33).

2.2.5 Discussion and Conclusions

The main lessons from the experiments presented in this chapter aras follows:

Using a high-capacity feature-learning system fed with raw pixelsyields excellent
results, when compared with systems that use engineered featuresThe accu-
racy is similar or better than competing systems, even when the segemtation
hypothesis generation and the post-processing module are absent orryesimple.

Feeding the system with a wide contextual window is critical to the quality of
the results. The numbers in table 2.1 show a dramatic improvemenbf the per-

formance of the multi-scale convolutional network over the single scal&ersion.

When a wide context is taken into account to produce each pixel labelthe role
of the post-processing is greatly reduced. In fact, a simple majoy vote of the
categories within a superpixel yields state-of-the-art accuracy. This seems to
suggest that contextual information can be taken into account by a feed-fowvard
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trainable system with a wide contextual window, perhaps as well as annference
mechanism that propagates label constraints over a graphical model, but ith a
considerably lower computational cost.

The use of highly sophisticated post-processing schemes, whicken so crucial
to the success of other models, does not seem to improve the resusigni cantly
over simple schemes. This seems to suggest that the performancdiiaited by the
guality of the labeling, or the quality of the segmentation hypotheses, ather than
by the quality of the contextual consistency system or the inferene algorithm.

Relying heavily on a highly-accurate feed-forward pixel labeling gstem, while
simplifying the post-processing module to its bare minimum cts down the infer-
ence times considerably. The resulting system is dramatically fasr than those
that rely heavily on graphical model inference. Moreover, the bulkof the com-
putation takes place in the convolutional network. This computation is algorith-

mically simple, easily parallelizable. Implementations on multi-core machines,
general-purpose GPUs, Digital Signal Processors, or specialized arcadtures im-
plemented on FPGAs is straightforward. This is demonstrated by the FPGA

implementation (32, 33) of the feature extraction scheme presented intis chap-
ter that runs in 60ms for an image resolution of 320 240.

This chapter demonstrates that a feed-forward convolutional network, rained end-
to-end in a supervised manner, and fed with raw pixels from large patees over multiple
scales, can produce state of the art performance on standard scene pargidatasets.
The model does not rely on engineered features, and uses purely srpised training
from fully-labeled images to learn appropriate low-level and mid-leel features.

Perhaps the most surprising result is that even in the absence of angost-processing,
by simply labeling each pixel with the highest-scoring category prauced by the con-
volutional net for that location, the system yields near state-of-the-art pixel-wise accu-
racy, and better per-class accuracy than all previously-published ésults. Feeding the
features of the convolutional net to various sophisticated schemes thagenerate seg-
mentation hypotheses, and that nd consistent segmentations and labehg by taking
local constraints into account improves the results slightly, but not considerably.

While the results on datasets with few categories are good, the accuraayf the best
existing scene parsing systems, including ours, is still qué low when the number of
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categories is large. The problem of scene parsing is far from being solvethile the
system presented here has a number of advantages and shortcomings, tharhing of
the scene parsing task itself is in need of re nement.

First of all, the pixel-wise accuracy is a somewhat inaccurate measuref the visual
and practical quality of the result. Spotting rare objects is often moreimportant than
accurately labeling every boundary pixel of the sky (which are oftenm greater number).
The average per-class accuracy is a step in the right direction, but ot the ultimate
solution: one would prefer a system that correctly spots every objecbr region, while
giving an approximate boundary to a system that produces accurate boundries for
large regions (sky, road, grass), but fail to spot small objects. A re ecton is needed on
the best ways to measure the accuracy of scene labeling systems.

Scene parsing datasets also need better labels. One could imagine ngiscene
parsing datasets with hierarchical labels, so that a window within abuilding would be
labeled as \building" and \window". Using this kind of labeling in conjun ction with
graph structures on sets of labels that containis-part-of  relationships would likely
produce more consistent interpretations of the whole scene.

The framework presented in this chapter trains the convolutional netas a pixel la-
beling system in isolation from the post-processing module that esures the consistency
of the labeling and its proper registration with the image regions. This equires that
the convolutional net be trained with images that are fully labeled at the pixel level.
One would hope that jointly ne-tuning the convolutional net and the pos t-processor
produces better overall interpretations. Gradients can be back-popagated through
the post-processor to the convolutional nets. This is reminiscenof the Graph Trans-
former Network model, a kind of non-linear CRF in which an un-normalized graphical
model based post-processing module was trained jointly with a coralutional network
for handwriting recognition (65). Unfortunately, preliminary experim ents with such
joint training yielded lower test-set accuracies due to overtraning.

A more important advantage of joint training would allow the use of weakly-labeled
images in which only a list of objects present in the image would be givenperhaps
tagged with approximate positions. This would be similar in spirit to sentence-level
discriminative training methods used in speech recognition and hadwriting recogni-
tion (65).
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Another possible direction for improvement includes the use of objetive functions
that directly operates of the edge costs of neighborhood graphs in such asaw that
graph-cut segmentation and similar methods produce the best answerOne such ob-
jective function is Turaga's Maximin Learning (100), which pushes up the lowest edge
cost along the shortest path between two points in di erent segmentsand pushes down
the highest edge cost along a path between two points in the same segment

Our system so far has been trained using purely supervised leamy applied to a
fairly classical convolutional network architecture. However, a numker of recent works
have shown the advantage of architectural elements such as rectifygnnon-linearities
and local contrast normalization (52). More importantly, several works haveshown the
advantage of using unsupervised pre-training to prime the convolutnal net into a good
starting point before supervised re nement (53, 54, 55, 69, 89). These metids improve
the performance in the low training set size regime, and would probalyl improve the

performance of the present system.
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(a) Image (b) Super Pixels
(c) Ground truth (d) Threshold in gPb hierarchy
(e) CRF on gPb threshold (f) MinCover in gPb hierarchy
Legend: building sky grass tree mountain object
Figure 2.7: Scene Parsing Results - Example of results on the Stanford background

dataset. (b),(d) and (f) show results with dierent labeling str ategies, overlayed with
superpixels (cf Section 2.2.3.1), segments results of a threshold the gPb hierarchy (6),
and segments recovered by the maximum purity approach with an optimal over (cf 2.2.3.3).
The result (c) is obtained with a CRF on the superpixels shown in @), as described in

Section 2.2.3.2.
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Figure 2.8: More Scene Parsing Results - More results using our multiscale convolu-
tional network and a at CRF on the Stanford Background Dataset.

Figure 2.9: Scene Parsing Results with More Classes - Typical results achieved
on the SIFT Flow dataset.
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(a) (b (0 (d)

Figure 2.10: Learned Filters - Typical rst layer features, learned on the SIFT Flow
dataset. (a) to (c) show the 16 lters learned at each scale, when no wght sharing is used
(networks at each scale are independent). (d) show the 16 Iters obtaied when sharing
weights across all 3 scales. All the lters are 7 7. We observe typical oriented edges, and
high-frequency lIters. Filters at higher layers are more di cult to analyze.
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3

A Hardware Platform for
Real-time Image Understanding

3.1 Introduction

Micro-robots, unmanned aerial vehicles (UAVsS), imaging sensor networkswireless
phones, and other embedded vision systems all require low cost andghi-speed imple-
mentations of synthetic vision systems capable of recognizing and categeing objects
in a scene.

Many successful object recognition systems use dense featuresmdted on regularly-
spaced patches over the input image. The majority of the feature extaction systems
have a common structure composed of a Iter bank (generally based on ori¢ed edge
detectors or 2D gabor functions), a non-linear operation (quantization, wimer-take-all,
sparsi cation, normalization, and/or point-wise saturation) and nally a po oling oper-
ation (max, average or histogramming). For example, the scale-invariant feaire trans-
form (SIFT (73)) operator applies oriented edge lIters to a small patch and determines
the dominant orientation through a winner-take-all operation. Finally, t he resulting
sparse vectors are added (pooled) over a larger patch to form local orieation his-
togram. Some recognition systems use a single stage of feature extractors &8, 60, 87).

Other models like HMAX-type models (77, 93) and convolutional networks usewo
more layers of successive feature extractors. Di erent training ajorithms have been
used for learning the parameters of convolutional networks. In (65) and (49),pure
supervised learning is used to update the parameters. However, eent works have
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focused on training with an auxiliary task (4) or using unsupervised oljectives (52, 54,
69, 89).

This chapter presents a scalable hardware architecture for large-saalmulti-layered
synthetic vision systems based on large parallel lter banks, such asanvolutional net-
works. This hardware can also be used to accelerate the execution (an@gial learning)
of recent vision algorithms like SIFT and HMAX (60, 93). This system is a data-ow
vision engine that can perform real-time detection, recognition and loalization in mega-
pixel images processed as pipelined streams. The system was desidwith the goal of
providing categorization of an arbitrary number of objects, while consuning very little
power.

Graphics Processing Units (GPUs) are becoming a common alternative taustom
hardware in vision applications, as demonstrated in (22). Their advantage oger custom
hardware are numerous: they are inexpensive, available in most recenomputers, and
easily programmable with standard development kits, such as nVidia CUDASDK. The
main reasons for continuing developing custom hardware are twofold: pesfmance and
power consumption. By developing a custom architecture that is fuly adapted to a
certain range of tasks (as is shown in this chapter), the product of powr consumption
by performance can be improved by a factor of 100.

3.2 Learning Internal Representations

One of the key questions of Vision Science (natural and arti cial) is howto produce
good internal representations of the visual world. What sort of internal representation
would allow an arti cial vision system to detect and classify objects into categories,
independently of pose, scale, illumination, conformation, and clutte? More interest-
ingly, how could an arti cial vision system learn appropriate internal representations
automatically, the way animals and humans seem to learn by simply lookig at the
world? In the time-honored approach to computer vision (and to pattern recognition
in general), the question is avoided: internal representations are n@duced by a hand-
crafted feature extractor, whose output is fed to a trainable classi . While the issue
of learning features has been a topic of interest for many years, considible progress
has been achieved in the last few years with the development of so-cedl deep learning
methods.
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Good internal representations are hierarchical. In vision, pixelsare assembled into
edglets, edglets into motifs, motifs into parts, parts into objects and objects into scenes.
This suggests that recognition architectures for vision (and for other malalities such
as audio and natural language) should have multiple trainable stages stackedn top of
each other, one for each level in the feature hierarchy. This raises wnew questions:
what to put in each stage? and how to train suchdeep, multi-stage architecture®
Convolutional Networks (ConvNets) are an answer to the rst question. Until recently,
the answer to the second question was to use gradient-based supemislearning, but
recent research indeep learninghas produced a number of unsupervised methods which

greatly reduce the need for labeled samples.

3.2.1 Convolutional Networks

Figure 3.1: Architecture of a typical convolutional network for object recognition. T his

implements a convolutional feature extractor and a linear classi er for generic N-class
object recognition. Once trained, the network can be computed on arbitary large input

images, producing a classi cation map as output.

Convolutional Networks (64, 65) are trainable architectures composed of mulple
stages. The input and output of each stage are sets of arrays callegature maps For
example, if the input is a color image, each feature map would be a 2D arrayontaining
a color channel of the input image (for an audio input each feature map would b a 1D
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array, and for a video or volumetric image, it would be a 3D array). At the output,
each feature map represents a particular feature extracted at all locabns on the input.
Each stage is composed of three layers: #er bank layer, a non-linearity layer, and a
feature pooling layer A typical ConvNet is composed of one, two or three such 3-layer
stages, followed by a classi cation module.

Each layer type is now described for the case of image recognition. Wetnoduce
the following convention: banks of images will be seen as three dimeiogal arrays in
which the rst dimension is the number of independent maps/images,the second is the
height of the maps and the third is the width. The input bank of a module is denoted
X, the output bank y, an image in the input bank x;, a pixel in the input bank Xk .

Filter Bank Layer - F: the inputis a 3D array with n, 2D feature mapsof size
n, n3. Each component is denotedxk , and each feature map is denoted;.
The output is also a 3D array, y composed ofm; feature maps of sizem, ms.
A trainable lter (kernel) ki inthe Iter bank has size |; |, and connects input
feature map x; to output feature map y;. The module computes

X
Yi=b+ ki X (3.1)
i
where by is a trainable bias parameter, and is the 2D discrete convolution

operator:

g2 1 g2 1
(Kj  Xi)pg = Kij;m;n Xizp+mig+n- (3.2)
m= [1=2n= =2
Each Iter detects a particular feature at every location on the input. Hence
spatially translating the input of a feature detection layer will tr anslate the output
but leave it otherwise unchanged.

Non-Linearity Layer - R; N : In traditional ConvNets this simply consists in a
pointwise tanh function applied to each site (jk ). However, recent implementa-
tions have used more sophisticated non-linearities. A useful one foratural image
recognition is the recti ed tanh: Rgps(X) = abs(g;:tanh(x)) where g; is a trainable
gain parameter per each input feature mapi. The recti ed tanh is sometimes

60



3.2 Learning Internal Representations

followed by a subtractive and divisive local normalization N, which enforces local
competition between adjacent features in a feature map, and betweenreftures
at the closeby spatial locations. Local competition usually results in &atures
that are decorrelated, thereby maximizing their individual role. T he subtractive

normalization operation for a given site Xjjx computes:

X
Vijk = Xijk Wpq-Xi;j + pik+ o (3.3)
ipq

wherew,q is a normalized truncated Gaussian weighting window (typically of sze
9 9). The divisive normalization computes

Vijk

max(mean( jx); jk) ! (3.4)

Yik =

P
. _ . 2 1:2 . . .
where j = (" jpqWpq'Vij+pkeq) - The local contrast normalization layer is

inspired by visual neuroscience models (74, 87).

Feature Pooling Layer - P: This layer treats each feature map separately.
In its simplest instance, calledP,, it computes the average values over a neigh-
borhood in each feature map. The neighborhoods are stepped by a stedarger
than 1 (but smaller than or equal the pooling neighborhood). This resits in a
reduced-resolution output feature map which is robust to small variaions in the
location of features in the previous layer. The average operation is sortiemes
replaced by a max operation,Py; . Traditional ConvNets use a pointwise tanh ()
after the pooling layer, but more recent models do not. Some ConvNetdispense
with the separate pooling layer entirely, but use strides larger han one in the
Iter bank layer to reduce the resolution (63, 96). In some recent versons of Con-
vNets, the pooling also pools similar features at the same location, in atition to

the same feature at nearby locations (54).

Supervised training is performed using on-line stochastic gradi@ descent to mini-
mize the discrepancy between the desired output and the actual outpt of the network.
All the coe cients in all the layers are updated simultaneously by t he learning proce-
dure for each sample. The gradients are computed with the back-propagatiomethod.
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Details of the procedure are given in (65), and methods for e cient training are detailed
in (66).

3.2.2 Unsupervised Learning of ConvNets

Training deep, multi-stage architectures using supervised gradint back propagation
requires many labeled samples. However in many problems labeled data scarce
whereas unlabeled data is abundant. Recent research in deep leargjr{7, 48, 88) has
shown that unsupervised learningcan be used to train each stage one after the other
using only unlabeled data, reducing the requirement for labeled saples signi cantly.
In (52), using abs and normalization non-linearities, unsupervised pe-training, and
supervised global re nement has been shown to yield excellent plormance on the
Caltech-101 dataset with only 30 training samples per category (more on thidelow).
In (69), good accuracy was obtained on the same set using a very di erentnsupervised
method based on sparse Restricted Boltzmann Machines. Several worlkdé NEC have
also shown that usingauxiliary tasks (4, 103) helps regularizing the system and produces

excellent performance.

3.2.2.1 Unsupervised Training with Predictive Sparse Decompositi on

The unsupervised method we propose, to learn the lIter coe cients in the Iter bank
layers, is called Predictive Sparse Decomposition (PSD) (53). Sirfar to the well-known
sparse coding algorithms (83), inputs are approximated as a sparse lineaombination
of dictionary elements.

Z =min kX WZkZ+ jZjs (3.5)

In conventional sparse coding ( 3.5), for any given inputX , an expensive optimization
algorithm is run to nd the optimal sparse representation Z (the \basis pursuit"

problem). PSD trains a non-linear feed-forward regressor (orencode)) C(X;K ) =

g:(tanh(X k+ b)) to approximate the sparse solutionZ . During training, the feature

vector Z is obtained by minimizing the following compound energy:

E(ZW;K)= kX WZK+ KZki+KZ C(X;K )KZ (3.6)

where W is the matrix whose columns are the dictionary elements andK = k;g;b
are the encoder lter, bias and gain parameters. For each training sampleX, one
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Table 3.1: Average recognition rates on Caltech-101 with 30 training samples per class.
Each row contains results for one of the training protocols (U = unsupevised, X = random,

+ = supervised ne-tuning), and each column for one type of architecture (F = lter bank,

P, = average pooling, Py = max pooling, R = recti cation, N = normalization).

Single Stage [64:F° ® R=N=P° > logreg]
F Raws N Pa |F Ragps Pa|F N Puy |F Pa

ut 54.2% 50.0% 44.3% 14.5%
X* 54.8% 47.0% 38.0% 14.3%
U 52.2% 43.3% 44.0% 13.4%
X 53.3% 31.7% 32.1% 12.1%

Two Stages [256:F° °© R=N=P* 4 logreg ]
F Ras N Pa |F Rgs Pa|F N Pum | F Pa

u* 65.5% 60.5% 61.0% 32.0%
X* 64.7% 59.5% 60.0% 29.7%
U 63.7% 46.7% 56.0% 9.1%
X 62.9% 33.7% 37.6% 8.8%

rst nds Z that minimizes E, then W and K are adjusted by one step of stochastic
gradient descent to lowerE. Once training is complete, the feature vector for a given
input is simply approximated with Z = C(X;K ), hence the process is extremely fast
(feed-forward).

3.2.2.2 Results on Object Recognition

In this section, various architectures and training procedures ar&eompared to determine
which non-linearities are preferable, and which training protocol nakes a di erence.

Generic Object Recognition using Caltech 101 Dataset. Caltech 101 is a stan-
dard dataset of labeled images, containing 101 categories of objects in the il

We use a two-stage system where, the rst stage is composed of &n layer with 64
Iters of size 9 9, followed by di erent combinations of non-linearities and pooling.
The second-stage feature extractor is fed with the output of the rst sage and extracts
256 output features maps, each of which combines a random subset of 16 featumaps
from the previous stage using 9 9 kernels. Hence the total number of convolution
kernels is 256 16 = 4096.

63



3. A HARDWARE PLATFORM FOR REAL-TIME IMAGE
UNDERSTANDING

Table 3.1 summarizes the results for the experiments, wherdd and X denotes unsu-
pervised pre-training and random initialization respectively, and * denotes supervised
ne-tuning of the whole system.

1. Excellent accuracy of 65.5% is obtained using unsupervised pre-traing and super-
vised re nement with abs and normalization non-linearities. The reault is on par with
the popular model based on SIFT and pyramid match kernel SVM (60). It is ckar that
abs and normalization are crucial for achieving good performance. This is aaxtremely
important fact for users of convolutional networks, which traditionally on ly use tanh().
2. Astonishingly, random lIters without any Iter learning whatsoever achieve decent
performance(62:9% for X ), as long as abs and normalization are presentRaps N Pa).
A more detailed study on this particular case can be found in (52).

3. Comparing experiments from rowsX vs X *, U vs U", we see that supervised ne
tuning consistently improves the performance, particularly with weak non-linearities.
4. It seems that unsupervised pre-training U, U*) is crucial when newly proposed

non-linearities are not in place.

Handwritten Digit Classi cation using MNIST Dataset. MNIST is a dataset
of handwritten digits (62): it contains 60;000 28 28 image patches of digits on uniform
backgrounds, and a standard testing set of 1000 di erent samples, widely used by the
vision community as a benchmark for algorithms. Each patch is labeled wih a number
ranging from O to 9.

Using the evidence gathered in previous experiments, we used a dwstage system
with a two-layer fully-connected classi er to learn the mapping between the samples'
pixels and the labels. The two convolutional stages were pre-trained msupervised
(without the labels), and re ned supervised (with the labels). An error rate of 0:53%
was achieved on the test set. To our knowledgethis is the lowest error rate ever
reported on the original MNIST dataset, without distortions or preprocessing The best
previously reported error rate was 0.60% (88).

3.2.2.3 Connection with Other Approaches in Object Recognition

Many recent successful object recognition systems can also be seensasgle or multi-
layer feature extraction systems followed by a classi er. Most comron feature extrac-
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tion systems like SIFT (73), HoG (28) are composed of Iter banks (oriented elge
detectors at multiple scales) followed by non-linearities (winne take all) and pooling
(histogramming). A Pyramid Match Kernel (PMK) SVM (60) classi er can also be
seen as another layer of feature extraction since it performs a K-mearisased feature
extraction followed by local histogramming.

3.3 A Dedicated Digital Hardware Architecture

Biologically inspired vision models, and more generally image process algorithms
are usually expressed as sequences of operations or transformations. Vhman be well
described by a modular approach, in which each module processes aipiut image bank
and produces a new bank. Figure 3.1 is a graphical illustration of this apmpach. Each
module requires the previous bank to be fully (or at least partially) available before
computing its output. This causality prevents simple parallelism to be implemented
across modules. However parallelism can easily be introduced withia module, and at
several levels, depending on the kind of underlying operations.

In the following discussion, banks of images will be seen as three densional arrays
in which the rst dimension is the number of independent maps/images, the second is
the height of the maps and the third is the width. As in section 3.2.1, theinput bank
of a module is denotedx, the output bank y, an image in the input bank x;, a pixel in
the input bank Xijjk . Input banks' dimensions will be notedn; n» n3, output banks
mi1 my mgz. Each module implements a type of operation that requiresK operations
per input pixel Xji . The starting point of the discussion is a general purpose processor
composed of an arithmetic unit, a fast internal cache of sizeS;yt, and an external
memory of sizeSgxt >> S |y7 . The bandwidth between the internal logic and the
external memory array will be noted BexT .

The coarsest level of parallelism can be obtained at the image bank level. module
that applies a unary transformation to produce one output image for each inut image
(n1 = m1) can be broken up inn; independent threads. This is the most basic form of
parallelism, and it nds its limits when n, ns becomes larger than a threshold, closely
related to Syt . In fact, past a certain size, the number of pixels that can be procesed
in a given time equalsBext =(2 K (bandwidth is shared between writes and reads),
assuming that no parallelism is performed at the operation level (the Koperations per
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pixel are applied sequentially). In other terms, the amount of paralldism that can be
introduced at this level is limited by Bext =K.

A ner level of parallelism can be introduced at the operation level. The cost of
fetching pixels from the external memory being very high, the moste cient form of
parallelism can occur when pixels are reused in multiple operationgK > 1). It can
be shown that optimal performances are reached iK operations can be produced in
parallel in the arithmetic unit. In other terms, the amount of parallel ism that can be
introduced at this level is limited by BexT .

If the internal cache sizeS)yt is large enough to hold all the images of the entire
set of modules to compute, then the overall performance of the syste if de ned by
B\nT , the bandwidth between the arithmetic unit and the internal cache. As the size
of internal memory caches grows (following Moore's law), more data cant internally,

which naturally pushes performance of computations fromK  Bgxt to K Byt .

For a given technology though,S;yt has an upper bound, and the only part of the
system we can act upon is the internal architecture. Based on these obsvsations, our
approach is to tackle the problem of producing theK parallel operations by rethink-
ing the architecture of the arithmetic units, while conserving the traditional external
memory storage. Our problem can be stated simply:

Problem 1 K being the number of operations performed per input pixelBext being
the bandwidth available between the arithmetic units and the exteashmemory array; we
want to establish an architecture that produced operations in parallel, so thatBgxt
is fully utilized.

3.3.1 A Data-Flow Approach

The data- ow hardware architecture was initiated by (2), and quickly b ecame an active
eld of research (30, 47, 59). (20) presents one of the latest data- ow architetures that
has several similarities to the approach presented here.

Figure 3.2 shows a data- ow architecture whose goal is to process homogenes
streams of data in parallel (32). It is de ned around several key ideas:

a 2D grid of Npt Processing Tiles (PTs) that contain:

{ a bank of processing operators. An operator can be anything from a FIFO

to an arithmetic operator, or even a combination of arithmetic operators.
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The operators are connected to local data lines,

{ a routing multiplexer (MUX). The MUX connects the local data lines to
global data lines or to neighboring tiles.

a Smart Direct Memory Access module (Smart DMA), that interfaces o -chip
memory and provides asynchronous data transfers, with priority managerant,

a set ofNgohal global data lines used to connect PTs to the Smart DMA,Ngjopal <<

NpT,
a set of local data lines used to connect PTs with their 4 neighbors,

a Runtime Con guration Bus, used to recon gure many aspects of the grid
at runtime|connections, operators, Smart DMA modes. .. (the con gurabl e ele-
ments are depicted as squares on Fig.3.2),

a controller that can recon gure most of the computing grid and the Smart DMA
at runtime.

3.3.1.1 On Runtime Recon guration

One of the most interesting aspects of this grid is its con guration capalilities. Many
systems have been proposed which are based on two-dimensional arrayspobcessing
elements interconnected by a routing fabric that is recon gurable. Field Programmable
Gate Arrays (FPGASs) for instance, o er one of the most versatile grid of processing
elements. Each of these processing elements|usually a simple lok-up table|can be
connected to any of the other elements of the grid, which provides wvifh the most generic
routing fabric one can think of. Thanks to the simplicity of the processing elements,
the number that can be packed in a single package is in the order of Qo 10°. The
drawback is the recon guration time, which takes in the order of milliseconds, and
the synthesis time, which takes in the order of minutes to hours dpending on the
complexity of the circuit.

At the other end of the spectrum, recent multicore processors imement only a few
powerful processing elements (in the order of 10s to 100s). For thesedhitectures, no
synthesis is involved, instead, extensions to existing programmig languages are used
to explicitly describe parallelism. The advantage of these architetures is the relative
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simplicity of use: the implementation of an algorithm rarely takes more than a few
days, whereas months are required for a typical circuit synthesigor FPGAs.

The architecture presented here is at the middle of this spectrm. Building a fully
generic data- ow computer is a tedious task. Reducing the spectrunof applications
to the image processing problem|as stated in Problem 1|allows us to den e the

following constraints:

high throughput is a top priority, low latency is not. Indeed, most of th e opera-
tions performed on images are replicated over both dimensions of theseages,
usually bringing the amount of similar computations to a number that is much
larger than the typical latencies of a pipelined processing unit,

therefore each operator has to provide with a maximum throughput (e.g. oe
operation per clock cycle) to the detriment of any initial latency, and has to be
stallable (e.g. must handle discontinuities in data streams).

con guration time has to be low, or more precisely in the order of the sysem's
latency. This constraint simply states that the system should be abé to recon g-
ure itself between two kinds of operations in a time that is negligibé compared

to the image sizes. That is a crucial point to allow runtime recon guration,

the processing elements in the grid should be as coarse grained as pdéted, to
maximize the ratio betweencomputing logicand routing logic. Creating a grid for
a particular application (e.g. ConvNets) allows the use of very coarse opators.
On the other hand, a general purpose grid has to cover the space of standard

numeric operators,

the processing elements, although they might be complex, should ndbave any
internal state, but should just passively process any incoming data.The task of
sequencing operations is done by a global control unit that simply con gues the
entire grid for a given operation, lets the data ow in, and prepares thefollowing

operation.

The rst two points of this list are crucial to create a exible data- ow system.
Several types of grids have been proposed in the past (30, 47, 58), often tng to solve
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the dual latency/throughput problem, and often providing a computing fabric that is
too rigid.

The grid proposed here provides a exible processing framework, uk to the stal-
lable nature of the operators. Indeed, any paths can be con gured on the grideven
paths that require more bandwidth than is actually feasible. Instead ofbreaking, each
operator will stall its pipeline when required. This is achieved ly the use of FIFOs
at the input and output of each operators, that compensate for bubbles in tre data
streams, and force the operators to stall when they are full. Any sequese of operators
can then be easily created, without concern for bandwidth issues.

The third point is achieved by the use of a runtime con guration bus, common
to all units. Each module in the design has a set of con gurable parametes, routes
or settings (depicted as squares on Figure 3.2), and possesses a uniquelrads on the
network. Groups of similar modules also share a broadcast address, whicdramatically
speeds up recon guration of elements that need to perform similar tasg.

The last point depicts the data- ow idea of having (at least theoretically) no state,
or instruction pointer. In the case of the system presented here,tlte grid has no state,
but a state does exist in a centralized control unit. For each con guration of the grid, no
state is used, and the presence of data drives the computations. Althagh this leads to
an optimal throughput, the system presented here strives to be as gamal as possible,
and having the possibility of con guring the grid quickly to perform a new type of
operation is crucial to run algorithms that require di erent types of ¢ omputations.

A typical execution of an operation on this system is the following: (1) the control
unit con gures each tile to be used for the computation and each connectin between the
tiles and their neighbors and/or the global lines, by sending a con guration command
to each of them, (2) it con gures the Smart DMA to prefetch the data to b e processed,
and to be ready to write results back to o -chip memory, (3) when the DMA is ready,
it triggers the streaming out, (4) each tile processes its respeote incoming streaming
data, and passes the results to another tile, or back to the Smart DMA, (5) he control
unit is noti ed of the end of operations when the Smart DMA has completed

Example 1 Such a grid can be used to perform arbitrary computations on stream
of data, from plain unary operations to complex nested operatiop. As stated above,
operators can be easily cascaded and connected across tiles, indegently managing
their ow by the use of input/output FIFOs.
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Figure 3.3 shows an example of con guration, where the grid is corgured to com-
pute a sum of two convolutions followed by a non-linear activatio function

K1 1 K 1K 1
Yiij = Tanh( Xgi+mj +nWimn + X2;i+ mjj +nW2imn ) (3.7)
m=0 n=0 m=0 n=0

The operator PR performs a sum of products, or a dot-product between an incom-
ing stream and a local set of weights (preloaded as a stream too). h€refore each tile
performs a 1D convolution, and 3 tiles are used to compute a 2D cawolution with a
3 3kernel. All the paths are simpli ed of course, and in some cases onlne represents
multiple parallel streams.

It can be noted that this last example provides a nice solution tBroblem 1. Indeed,
the input data being 2 imagesx; and x», and the output data one imagey;, the K
operations are performed in parallel, and the entire operation isachieved at a bandwidth
of BexT =3.

3.3.2 An FPGA-Based ConvNet Processor

Recent DSP-oriented FPGASs include a large number of hard-wired MACunits and
several thousands of programmable cells (lookup tables), which allows$t prototyping
and real-time simulation of circuits, but also actual implementations to be used in nal
products.

In this section we present a concrete implementation of the ideas msented in sec-
tion 3.3.1, specially tailored for ConvNets. We will refer to this implementation as
the Convnet Processor The architecture presented here has been fully coded in hard-
ware description languages (HDL) that target both ASIC synthesis and programmalte
hardware like FPGAs.

A schematic summary of theConvNet Processorsystem is presented in Figure 3.4.
The main components of our system are: (1) &ontrol Unit (implemented on a general
purpose CPU), (2) a grid of Processing Tiles (PTs), and (3) a Smart DMA interfacing
external memory via a standard controller.

In this implementation, the Control Unit is implemented by a general purpose CPU
This is more convenient than a custom state machine as it allows the usef standard C
compilers. Moreover, the CPU has full access to the external memor{via global data
lines), and it can use this large storage to store its program instructions
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| :
@1 i

Figure 3.4: Overview of the ConvNet Processor system. A grid of multiple full-aistom
Processing Tiles tailored to ConvNet operations, and a fast streamingnemory interface
(Smart DMA).
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3.3.2.1 Specialized Processing Tiles

The PTs are independent processing tiles laid out on a two-dimensional gridAs pre-
sented in section 3.3.1, they contain a routing multiplexer (MUX) and local operators.
Compared to the general purpose architecture proposed above, this ingmentation is
specialized for ConvNets and other applications that rely heavily on twodimensional
convolutions (from 80% to 90% of computations for ConvNets).

Figure 3.4 shows this specialization:

P
the top row PTs only implement Multiply and Accumulate (MAC) arrays ( Q

operators), which can be used as 2D convolvers (implemented in the FP& by
dedicated hardwired MACS). It can also perform on-the- y subsampling (spatial

pooling), and simple dot-products (linear classi ers) (31),

the middle row PTs contain general purpose operators (squaring and diding are

necessary for divisive normalization),

the bottom row PTs implement non-linear mapping engines, used to cormute all
sorts of functions from Tanh() to Sqrt() or Abs(). Those can be used at all stages
of the ConvNets, from normalization to non-linear activation units.

The operators in the PTs are fully pipelined to produce one result r clock cycle.
Image pixels are stored in o -chip memory as Q8.8 (16bit, xed-point), transported on
global lines as Q8.8 but scaled to 32bit integers within operators, to keefull precision
between successive operations. The numeric precision, and hende size of a pixel,
will be noted Py .

The 2D convolver can be viewed as a data- ow grid itself, with the only dierence
that the connections between the operators (the MACs) are xed. The rason for
having a full-blown 2D convolver within a tile (instead of a 1D convolver per tile, or
even simply one MAC per tile) is that it maximizes the ratio between actual computing
logic and routing logic, as stated previously. Of course itis not as exibk, and the choice
of the array size is a hardwired parameter, but it is a reasonable choicéor an FPGA
implementation, and for image processing in general. For an ASIC implem#ation,

having a 1D dot-product operator per tile is probably the best compromse.
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The pipelined implementation of this 2D convolver (as described in 81)), computes
Equation 3.8 at every clock cycle.
iK1
Yiij = Xz t X1;i+m;j +nW1;m;n (3.8)
m=0 n=0
In equation 3.8 Xy is a value in the input plane, wimn is a value in aK K

convolution kernel, x;i; is a value in a plane to be combined with the result, andy; is
the output plane.

Both the kernel and the image are streams loaded from the memory, and the ter
kernels can be pre-loaded in local caches concurrently to another opaion: each new
pixel thus triggers K K parallel operations.

All the non-linearities in neural networks can be computed with the use of look-up
tables or piece-wise linear decompositions.

A loop-up table associates one output value for each input value, and the&fore
requires as much memory as the range of possible inputs. It is the fagemethod to
compute a non-linear mapping, but the time required to reload a new talte is prohibitive
if di erent mappings are to be computed with the same hardware (and the memory
required can be prohibitive as well).

A piece-wise linear decomposition is not as accuratef (is approximated by g, as in
Eq. 3.9), but only requires a couple of coe cientsg; to represent a simple mapping such
as a hyperbolic tangent, or a square root (for a limited memory budget, itis therefore
more accurate than a look-up table). It can be reprogrammed very quicklyat runtime,
allowing multiple mappings to reuse the same hardware. Moreover, ithe coe cients
a; follow the constraint given by Eq. 3.10, the hardware can be reduced to dfters and
adders only (divisions by a powers of 2).

gx)=ax+h for x 2[li;li+] (3.9
1 1
g = om + on m;n 2 [0; 5] (3.10)

3.3.2.2 Smart DMA Implementation

A critical part of this architecture is the Direct Memory Access (DM A) module. Our
Smart DMA module is a full custom engine that has been designed to allowppma
ports to access the external memory totally asynchronously.
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A dedicated arbiter is used as hardwarédMemory Interface to multiplex and demul-
tiplex access to the external memory with high bandwidth. Subseqgent bu ers on each
port insure continuity of service on a port while the others are utilized.

The DMA is smart, because it complements the Control Unit. Each port of the
DMA can be con gured to read or write a particular chunk of data, with an opti onal
stride (for 2D streams), and communicate its status to the Control Unit. Although this
might seem trivial, it respects one the foundations of data- ow computing: while the
Control Unit con gures the grid and the DMA ports for each operation, an operation is
driven exclusively by the data, from its fetching, to its writing back to o -chip memory.

If the PTs are synchronous to the memory bus clock, the following riationship can
be established between the memory bandwidttBext , the number of possible parallel

data transfers MAX (Npwma ) and the bits per pixel Pyis:

MAX (Npma ) = BPZT : (3.11)
Its

For example Ppiis = 16 and Bext = 128bit=cycallows MAX (Npma ) = 7 simulta-

neous transfers.

3.3.3 Compiling ConvNets for the ConvNet Processor

Prior to being run on the ConvNet Processor, a ConvNet has to be trained o ine,
on a regular computer, and then converted to a compact representation that can be
interpreted by the Control Unit to generate controls/con gurations for th e system.

O ine, the training is performed with existing software such as Lush (61) or Torch-
5 (23). Both libraries use the modular approach described in the intraluction of sec-
tion 3.3.

On board, the Control Unit of the ConvNet Processor decodes the represgation,
which results in several grid recon gurations, interspersed with data streams. This
representation will be denoted asbytecodefrom now on. Compiling a ConvNet for
the ConvNet Processor can be summarized as the task of mapping the o ineraining
results to this bytecode.

Extensive research has been done on the question of how to schedulata ow

computations (68), and how to represent streams and computations on stream(59).
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In this section, we only care about how to schedule computations for a CorNet (and
similar architectures) on our ConvNet Processor engine.
It is a more restricted problem, and can be stated simply:

Problem 2 Given a particular ConvNet architecture, and trained parameters, and
given a particular implementation of the data- ow grid, what is the squence of grid
con gurations that yield the shortest computation time? Or in other terms, for a given
ConvNet architecture, and a given data- ow architecture, how to producethe bytecode
that yields the shortest computing time?

As described in the introduction of section 3.3, there are three leds at which
computations can be parallelized:

across modules: operators can be cascaded, and multiple modules can hmme
puted on the y (average speedup),

across images, within a module: can be done if multiple instances of éhrequired
operator exist (poor speedup, as each independent operation requirdts own
input/output streams, which are limited by Bexr ),

within an image: some operators naturally implement that (the 2D convolver,
which performs all the MACs in parallel), in some cases, multiple tles can be
used to parallelize computations.

Parallelizing computations across modules can be done in special casé&ample 1
illustrates this case: two operators (each belonging to a separate modk) are cascaded,
which speeds up this computation by a factor of 2.

Parallelizing computations across images is straightforward but very linited. Here
is an example that illustrates that point:

Example 2 The data- ow system built has 3 PTs with 2D convolvers, 3 PTs with
standard operators, and 2 PTs with non-linear mappers (as depied in Figure 3.4, and
the exercise is to map a fully-connected lIter-bank with 3 inputs ad 8 outputs, e.g. a
ler bank where each of the 8 outputs is a sum of 3 inputs convolved thia di erent
kernel:

yj = ki xj for j 2[0;7] (3.12)
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For the given hardware, the optimal mapping is: each of the three 2Bonvolvers is
con gured to convolve one of the three inputsx; with a kernel kj , and a standard PT
is con gured to accumulate those 3 streams in one and producg .

Although optimal (3 images are processed in parallel), 4 simultagous streams are
created at the Smart DMA level, which imposes a maximum bandwidth &@gxt =4 per
stream.

Parallelizing computations within images is what this grid is best at. Example 1 is
a perfect example of how an operation (in that case a sequence of operatinsan be

done in a single pass on the grid.

3.3.4 Application to Scene Understanding

Several applications were implemented on neuFlow: from a simple facdetector to
a pixel-wise obstacle classier (25) and a complete street scene pans as shown on
Figure 3.5. Other example applications can be found atvww.neuflow.org .

In this section we focus on the elaboration, training and implementaton of a com-
plete street-scene parser. This work extends and is strongly in$f@d by previous work
from Grangier et al. (43). Scene parsing, as seen in Chapter 2, aims at segmenting
and recognizing the content of a scene: from objects to large structusgroads, sky,
buildings, cars, etc. In other words, the goal is to map each pixel of a giveinput image
to a unique label.

Grangier et al. (43) showed that using a deep convolutional network with a greedy
layer-wise learning (up to 6 convolutional layers) could yield sigmcantly better results
than simpler 2 or 3-layer systems. In Chapter 2, we showed how a mutcale network
could e ciently encode and describe image patches for this type of tak. We followed
a slightly di erent method here, favoring larger kernels over deeper networks, as these
are easily accelerated with our hardware, but kept the idea of increm@ally growing
the network's capacity.

A subset of the LabelMe dataset (91), containing about 3000 images of spanish
cities 1, was used to train this convolutional network. We removed 10% of the seta be
used for validation (testing). The twenty most occurring classes wee extracted, and
the goal was set to minimize the pixel classi cation error on those classe

1 http://people.csail.mit.edu/torralba/benchmarks/
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Figure 3.5: Scene Parsing on FPGAs - Street scene parsing: a convolutional network
was trained on the LabelMe spanish dataset (91) with a method similar to (43) The
training set only contains photos from spanish cities; the image above ia picture taken in
Edinburgh. The convolutional network is fully computed on neuFlow, achieving a speedup
of about 100x (500x375 images are processed in 83ms, as opposed to 8s on a laptop).
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All the images were rst resized to 500 375, then 400 million patches were ran-
domly sampled to produce a 20 1e8 N N tensor where the rst dimension indexes
the classes, the second indexes patches of which the center piedlongs to the corre-
sponding class, and the last two dimensions are the height and width ofrte patch.

The training was done in 3 phases. First: we started with a simple mdel, CN¢
(table 3.2), similar to the one originally proposed in (65). The model has srall kernels
(5 5) and 3 convolutional layers only. This rst model was trained to optimi ze the
pixel-wise cross entropy (negative log-likelihood) through stochaic gradient descent
over the training set. Minimizing the cross entropy (rather than t he mean-square error)
helps promote the categories of rare appearance. Small kernels, and a feayérs allowed
the system to see 10 million training patches in a couple of hours, andanverge to a
reasonable error fairly quickly. With these parameters, the recepte eld of the network
is 32 32, which only represents 0.55% of the complete eld of view;

Second: all the convolutional kernels were then increased to 9 9, by padding the
extra weights with zeros: CN» (table 3.3). This increased the receptive eld to 60 60
(about 2% of the image), with the interesting property that at time O of th is second
training phase, the network was producing the same predictions tharwith the smaller
kernels;

Third: a fourth layer was added|a.k.a. greedy layer-wise learning|whi ch in-
creased the receptive eld to 92 92 (5% of the image). This required dropping the
previous linear classi er, and replace it with a new|randomly initial ized|larger clas-
sier.

Performances were evaluated on a separate test set, which was createding a
subset (10%) of the original dataset. Results are shown on Table 3.5.

Once trained, the network was passed over to luaFlow, and transparehf mapped
to neuFlow. A key advantage of convolutional networks is that they can be apfied to
sliding windows on a large image at very low cost by simply computing covolutions at
each layer over the entire image. The output layer is replicated acerdingly, producing
one detection score for every 92 92 window on the input, spaced every 4 pixels.
Producing the prediction on one image of that size takes about 8 seconds onlaptop-
class Intel DuoCore 2.66GHz processor; the same prediction is produced 83ms on

neuFlow, with an average error of 102 (quantization noise).
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3.3 A Dedicated Digital Hardware Architecture

Layer Kernels: dims [nb] Maps: dims [nb]

Input image 32 32[3]
NO (Norm) 32 32[3]
C1 (Conv) 5 51[48] 28 28[12]
P2 (Pool) 2 2]1] 14 14 [12]
C3 (Conv) 5 5[384] 10 10 [32]
P4 (Pool) 2 2[1] 5 5]32]
C5 (Conv) 5 5[1536] 1 11[48]
L (Linear) 1 11[960] 1 1[20]

Table 3.2: CNj: base model. N: Local Normalization layer (note: only the Y channel
is normalized, U and V are untouched); C: convolutional layer; P: poolirg (max) layer; L:
linear classi er.

3.3.5 Performance

Figure 3.6 reports a performance comparison for the computation of a typicaConvNet
on multiple platforms:

the CPU data was measured from compiled C code (GNU C compiler and Blas
libraries) on a Core 2 Duo 2.66GHz Apple Macbook PRO laptop operating at
90W (30 to 40W for the CPU);

the FPGA data was measured on both a Xilinx Virtex-4 SX35 operating at
200MHz and 7W and a Xilinx Virtex-6 VLX240T operating at 200MHz and
10w,

the GPU data was obtained from a CUDA-based implementation running on a
laptop-range nVidia GT335m operating at 1GHz and 40W;

the ASIC data is simulation data gathered from an IBM 65nm CMOS process.For
an ASIC-based design with a speed of 400MHz (speeds of up to 1 GHz are
possible), the projected power consumption is simulated at 3W.

The test ConvNet is composed of a non-linear normalization layer, 3 convolipnal
layers, 2 pooling layers, and a linear classi er. The convolutional &yers and pooling
layers are followed by non-linear activation units (hyperbolic tanger). Overall, it
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Figure 3.6: Compute time for a typical ConvNet (as seen in Figure 3.1).
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3.3 A Dedicated Digital Hardware Architecture

Layer Kernels: dims [nb] Maps: dims [nb]

Input image 60 60 [3]
NO (Norm) 60 60 [3]
C1 (Conv) 9 9[48] 52 52[12]
P2 (Pool) 2 2]1] 26 26 [12]
C3 (Conv) 9 9[384] 18 18 [32]
P4 (Pool) 2 2[1] 9 9]32]
C5 (Conv) 9 9[1536] 1 11[48]
L (Linear) 1 11[960] 1 1[20]

Table 3.3: CN3: second model. Filters are increased, which doubles the recepé eld

possesseBlxer K K learned kernels,NppooL. P P learned pooling kernels, and\
200 dimension classi cation vectors.

Figure 3.6 was produced by increasing the parameterdlxer , NpooL, K and P
simultaneously, and estimating the time to compute the ConvNet for eab set of pa-
rameters. The x-axis reports the overall number of linear connectios in the ConvNet
(e.g. the number of multiply and accumulate operations to perform).

Note: on the spectrum of parallel computers described in Section 3.3.1.1GPUs
belong to the small grids (100s of elements) of large and complex procesgianits (full-
blown streaming processors). Although they o er one of the most intersting ratio of
computing power over price, their drawback is their high power ©nsumption (from
40W to 200W per unit).

Table 3.6 reports a performance comparison for the computation of a typical Iter
bank operation on multiple platforms: 1- the CPU data was measured from comjted
C code (GNU C compiler and Blas libraries) on a Core 2 Duo 2.66GHz Apple Macbook
PRO laptop operating at 90W (30W for the CPU); 2- the FPGA data was measured
on a Xilinx Virtex-6 VLX240T operating at 200MHz and 10W (power consumption
was measured on the board) ; 3- the GPU data was obtained from a CUDA-based
implementation running on a laptop-range nVidia GT335m operating at 1GHz and 30W
and on a nVidia GTX480 operating at 1GHz and 220W; 4- the ASIC data is simulation
data gathered from an IBM 45nm CMOS process (5 5mm). For an ASIC-based design

with a speed of 400MHz, the projected power consumption, using postysthesis data
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Layer Kernels: dims [nb] Maps: dims [nb]

Input image 92 92 [3]
NO (Norm) 92 92 ]3]
C1 (Conv) 9 9][48] 84 84 [12]
P2 (Pool) 2 2]1] 42 42 [12]
C3 (Conv) 9 9[384] 34 34 [32]
P4 (Pool) 2 2[1] 17 17 [32]
C5 (Conv) 9 9[1536] 9 91[48]
C6 (Conv) 9 9[1024] 1 1[128]
L (Linear) 1 1[960] 1 1[20]

Table 3.4: CNg: a fourth convolutional layer C6 is added, which, again, increases the
receptive eld. Note: C6 has sparse connectivity €.geach of its 128 outputs is connected
to 8 inputs only, yielding 1024 kernels instead of 6144).

Model CN]_ CN2 CN3
CN Error (%) 29.75| 26.13 | 24.26
CN+MST Error (%) 27.17 | 24.40 | 23.39

Table 3.5: Percentage of mislabeled pixels on validation set. CN Error is the pigl-
wise error obtained when using the simplest pixelwise winner, igdicted by the ConvNet.
CN+MST Error is the pixelwise error obtained by histogramming the ConvNet's predic-
tion into connected components (the components are obtained by computig the minimum
spanning tree of an edge-weighted graph built on the raw RGB image, and meging its
nodes using a surface criterion, in the spirit of (35)).

and standard analysis tools is estimated at 5W.

The current design was proven at 200MHz on a Xilinx Virtex 6 ML605 platform,
using four 10 10 convolver grids. At this frequency, the peak performance is 80 bilbn
connections per second, or 160 GOPs. Sustained performances for typicgbplications

(such as the street scene parser) range from 60 to 120 GOPs, sustained.

3.3.6 Precision

Recognition rates for standard datasets were obtained to benchmark the gcision loss

induced by the xed-point coding. Using oating-point representati on for training
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3.3 A Dedicated Digital Hardware Architecture

CPU V6 mGPU IBM GPU

Peak GOPs 10 160 182 1280 1350
Real GOPs 1.1 147 54 1164 294
Power W 30 10 30 5 220
GOPs/W 0.04 14.7 1.8 230 1.34

Table 3.6: Performance comparison. 1- CPU: Intel DuoCore, 2.7GHz, optimized C code,
2- V6: neuFlow on Xilinx Virtex 6 FPGA|on board power and GOPs measurements; 3-
IBM: neuFlow on IBM 45nm process: simulated results, the design wasully placed and
routed; 4- mGPU/GPU: two GPU implementations, a low power GT335m and a high-end
GTX480.

and testing, the following results were obtained: forNORB, 85% recognition rate was
achieved on the test dataset, forMNIST, 95% and for UMASS (faces dataset), 98%.
The same tests were conducted on the ConvNet Processor with xed-pat representa-
tion (Q8.8), and the results were, respectively: 85%, 95% and 98%, whicloa rms the
assumptions made a priori on the in uence of quantization noise.

To provide more insight into the xed-point conversion, the number of weights
being zeroed with quantization was measured, in the case of the NORB ob¢t detector.
Figure 3.7 shows the results: at 8bits, the quantization impact is alrady signi cant
(10% of weights become useless), although it has no e ect on the detectioaccuracy.
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Figure 3.7: Quantization e ect on trained networks: the x axis shows the xed point
position, the y axis the percentage of weights being zeroed after quaization.
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4

Discussion

In this thesis | presented three contributions: (1) a multiscale deep convolutional net-
work architecture to easily capture long-distance relationships beween input variables
in image data, (2) a tree-based algorithm to e ciently explore multiple segmentation
candidates, to produce maximally con dent semantic segmentations ofrmages, (3) a
custom data ow computer architecture optimized for the computation of convolutional
networks, and similarly dense image processing models. All threeoatributions were
produced with the common goal of getting us closer to real-time image undstanding.

Contribution (1) was deployed in production at a company | co-founded caled
MadBits . They are now part of a larger framework that relies on deep networks to
learn rich representations of images, and enable a wide range of featuredassi cation,
text-based search, image-based search (search in model's featureasp), online learning
(using density estimation in feature space), ...

My co-author Camille Couprie extended this work in (27) by applying it t o RGB-D
imagery (image+depth data), to solve the problem of indoor semantic segmatation.
The overall method produced state-of-the-art results on a standardoenchmark.

Contribution (3) was used to power several DARPA and ONR projects, and vas
successfully integrated into industry-level systems by HRL Laboatories. It was also
tested by multiple companies and research laboratories. In particular it was fully
implemented as an ASIC, 45nm, IBM technology (86).

Contribution (3) also served as the technological basis for another companyatled

! http:/iww.madbits.com
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4. DISCUSSION

TeraDeep !, which focuses on building high-performance hardware for deep-leaing
based applications.

There are several extensions and future directions that shouwld fatiw this thesis.

Contribution (1) can easily be extended to work on all sorts of other modaliies:
video, speech, music. .. The idea of a coarse-to- ne, or simply mulcale representation
with weight-sharing is fairly generic, and can be seen as a powerfulegularizer that
exploits the fact that all these signals can be generated at arbitrary scale such that
features benet from being learned and extracted at multiple scales Next, a more
unsupervised approach to feature learning could potentially help poduce more generic
features, by exploiting much larger amounts of unlabeled data (obtainimy labeled data
for semantic segmentation tasks is very expensive). This was largelynexplored dur-
ing this thesis, mostly because the current bene ts of unsuperised pre-training are
still negligible, when compared to the gains obtained with a better malel architecture
and/or increased amounts of labeled data.

Contribution (2) can also naturally be applied to other modalities, and in particular
can easily be extended to video data. To do so, the segmentation tree ratisimply be
constructed on volumes of pixels (by constructing a graph over pixal in space and
time). Couprie et al. (26) proposed a causal graph-based video segmentation which is
perfectly t for this type of task, and has the bene t of being causal (which means it
can be used to process real-time video streams).

Contribution (3) was mostly limited by in-chip memory at the time of th is thesis.
The greatest gains will be achieved by migrating most of the o -chip storageto in-chip,
distributed memory, which will enable one to two orders of magnitudeimprovement in
both power consumption and processing speed. In a foreseeable foiy generic, pro-
grammable, and self-contained circuits will be added to industry-tandard processors,
especially mobile ones, to enable e cient computations of basic deep etwork opera-
tors. This will enable a wide range of recognition applications to be embaded in cheap
mobile devices.

1 http://www.teradeep.com
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