CNP: An FPGA-based Processor for Convolutional Networks

Clément Farabet!, Cyril Poulet!, Jefferson Y. Han” and Yann LeCun'

! Courant Institute, New York University
2 Perceptive Pixel Inc.

Overview

We present an efficient implementation of convolutional networks (ConvNets) on a DSP-oriented
Field Programmable Gate Array (FPGA). The implementation exploits the parallel structure of
ConvNets and takes full advantage of multiple hardware multiply-accumulate units on the FPGA.
Our system uses a single FPGA with an external memory module. A compiler software was
implemented, to convert trained ConvNets into code for the ConvNet Processor (CNP). This
design can be used for low-power, lightweight embedded vision systems for micro-UAVs and
other small robots.

CNP to compute ConvNets

Convolutions Subsampling Convolutions Subs. Conv. Full connections
Ker: 7x7 Size: 2x2 Ker: 7x7 Size: 2x2 Ker: 7x7

= 1 7 _,/\/>

— 1 Fo6: F7:
I 1= 2@117x85 1@117x8
Eiﬁzzz\ B 5
hl S2: 6@253x189
Input Image
512x384 S4: 16 @ 123x91 e

Cl: 6@506x378
C3: 16 @247x183

C5: 80@ 117x85
Convolutional Networks (ConvNets) are:

* made of a feed-forward, bio-inspired architecture consisting of multiple linear convolution
filters interspersed with point-wise non-linear squashing functions and pooling functions,

e trainable to perform detection, recognition and segmentation on raw 1mages.
To be run on the CNP, a ConvNet must be:

e defined and trained on a conventional machine, using a learning library (e.g. Lush, EBLearn)

e extracted and compiled into the proper sequence of calls to run on the CNP (we designed a
compiler for this task)

Custom Design

Our current system:

e fits in a single FPGA + an external memory!
* has been integrated onto a 7x8cm printed circuit board!

e only draws up to 15W during peak computations!

In a UAV, the CNP could be used as the main vision
sensor (the camera sensor 1s handled by the CNP) to
detect and track obstacles.

References

[5] Y. LeCun and L. Bottou, “Lush reference manual,” Tech. Rep., 2002, code available at
http://lush.sourceforge.net. [Online]. Available: http://lush.sourceforge.net

[1] R. G. Shoup, “Parameterized convolution filtering in a field programmable gate array,” in Se-
lected papers from the Oxford 1993 international workshop on field programmable logic and
applications on More FPGAs. Oxford, United Kingdom: Abingdon EE&CS Books, 1994, pp.
274-280.

[6] M. Osadchy, Y. LeCun, and M. Miller, “Synergistic face detection and pose estimation with
energy-based models,” Journal of Machine Learning Research, vol. 8, pp. 1197-1215, May
2007.

[7] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp, “Off-road obstacle avoidance through
end-to-end learning,” in Advances in Neural Information Processing Systems (NIPS 2005).

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
MIT Press, 2005.

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, November 1998.

[8] R. Hadsell, A. Erkan, P. Sermanet, J. Ben, K. Kavukcuoglu, U. Muller, and Y. LeCun, “A multi-
range vision strategy for autonomous offroad navigation,” in Proc. Robotics and Applications
(RA’07), 2007.

[3] Y. LeCun, “Generalization and network design strategies,” in Connectionism in Perspective,
R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels, Eds. Zurich, Switzerland: Elsevier, 1989,
an extended version was published as a technical report of the University of Toronto.

[9] J. Cloutier, E. Cosatto, S. Pigeon, F. Boyer, and P. Y. Simard, “Vip: An fpga-based processor for
image processing and neural networks,” in Fifth International Conference on Microelectronics
for Neural Networks and Fuzzy Systems (MicroNeuro’96), Lausanne, Switzerland, 1996, pp.
330-336.

[4] C. Garcia and M. Delakis, “Convolutional face finder: A neural architecture for fast and ro-
bust face detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 11, pp. 1408-1423, 2004.

NEW YORK UNIVERSITY

—

The FPGA

® Our system fits in a single FPGA with built-in hardware
multiply-accumulate units,

® Its performance is defined by the bandwidth to the
external memory chip.

N

f
Vectorial ALU

Implements ConvNet-specific operations:

® All these operations are vectorial (work on streams), and
compute in the same time for a given input size,

® These 1nstructions are geared towards ConvINets, or more
generally vision systems in which the bulk of computations
1s spent on convolutions,

® The instructions are:

- 2D convolution,

- dot product between n 2D planes and a vector (n dims),

- point-wise non-linear mapping,

- spatial (2D) pooling / subsampling,

- square root of a vector/matrix,

- product between vectors/matrices,

- division of a vector/matrix by another

_

135 GOP/s peak with 13x13 kernels

_

~

10W on average

Computer

A |

CONYV, DOT,
POOL/SUB

NON-LIN

DIVISION

Memory
Management

Multi-Port

| Memory
Controller [—

Priority
Manager

j ________________ A

I/0
\/
Screen
o External
: Hardware | HW Unit Memory Chip(s)

VALU: Main Instructions

2D Convolver / Pooling
This instruction performs a 2D convolution [1] on streaming data, and applies spatial pooling at
the output. At each clock cycle, z;; 1s computed according to the formula:

x: input plane,

Output data

K—1K—1 ker: K x K convolution kernel,
Zij = Yij + SJ SJ Titm,j+nkermn, y: plane accumulated to output, z: output plane.
m=0 n=0
Input data: x D CON\F
Internal data stream -4® [W-K] delays*
(A =1 clock cycle delay) - A .
0 A@A A M AP AP linem
Hard-wired
operations in ALU
Data stream from/to [W-K] delays*
memory - A ~
line m A A AP A P A plline m+1
Kernel loaded from
CPU
* W = stridein inputdata
(e.g. image width), .
K = kernel width = 3 in line mt 1 A A Convolved| |Pooling/ . .
this example . data+y=1z SubsamphngJ

I
Input data: y

Non-linear mapping
The point-wise non-linearity 1s implemented as a piecewise approximation of the hyperbolic
tangent function: g(x) ~ A.tanh(B.x), with the following constraint (to use shifts and adds
instead of multipliers):

1 1

for

and a; =

g9(x) = a;z +b; z € [lj, li11]

om 1 gn

271

m,n € |0,5].

>1000 convs / sec on 640x480 1nputs

CNP: Architecture

—

Memory Controller

Provides an abstraction over the memory:

® Instructions in the ALU operate on streams of data,

® Streams are handled by a complex memory controller,
that allows different units of the system to read/write from/
to the external memory asynchronously,

® A dedicated hardware arbiter (priority manager) is used
to multiplex/demultiplex access to the high bandwidth
external memory chip.

\

_

Performance

104

Time to convolve a 640x480 image with a KxK kernel

ol Actual result on a dual-core P4 — 2.4GHz (nested loops)] el T T T e O A

Actual resulﬁ ona dual-cofe P4 - 2.4GH z (nested lo |

2 2 : : :
g R & | Ideal estimation on a Pentium 4 — 3GHz
o 1} ldealresult on a Pentium 4 — 3GHz (unreachable)] T I T
£ £
A : s
ap | a0 | | |
g | g ; — |
= o0 N R I cul A U S S S A = Result achieved with the current CNP,
L S 5 (1 s s O Sy s AP SO NI QP . e T~
g A N (O T ;Resqlt aqh1ev§d Wlth the cgﬂemt CNP g Expected with optimized CN
O A X L i O ? f

A L N e T Tt NN N———— S S——

/ A Expécted with opﬁimiZed GNP
10-1 ; ; ; ; 3 i i i ; i 3 i 3 ; 100 ; 1 ; ;
1x1 3x3 5x5 9x9 11x11 13x13 15x15 17x17 0 100 200 300 400

Tx7 |
kernel size (KxK)

Time to compute a CSCSCF ConvNet (512x384 input, 7x7 kernels, 2x2 pooling)

number of connections in ConvNet (in million)

600

An Application: Face Detection

A ConvNet was trained on a dataset of faces and non-faces according to the method described
in [2]. Its architecture—number of layers, feature maps—is given in the first figure.

(non faces).

The CNP computes this ConvNet—image acquisition,

scales.

ated on the fly by an asynchronous display manager.

The dataset: 45,000 images—30,000 used for training,
15,000 for testing—50% faces, and 50% random images

post-processing and clas-
sification—at 10fps for a 512x384 input image size and 3

The two pictures show the output of the system when run-
ning the face detection ConvNet. These images are gener-

