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Overview

We present an efficient implementation of convolutional networks (ConvNets) on a DSP-oriented
Field Programmable Gate Array (FPGA). The implementation exploits the parallel structure of
ConvNets and takes full advantage of multiple hardware multiply-accumulate units on the FPGA.
Our system uses a single FPGA with an external memory module. A compiler software was
implemented, to convert trained ConvNets into code for the ConvNet Processor (CNP). This
design can be used for low-power, lightweight embedded vision systems for micro-UAVs and
other small robots.
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Convolutional Networks (ConvNets) are:

* made of a feed-forward, bio-inspired architecture consisting of multiple linear convolution
filters interspersed with point-wise non-linear squashing functions and pooling functions,

e trainable to perform detection, recognition and segmentation on raw 1mages.
To be run on the CNP, a ConvNet must be:

e defined and trained on a conventional machine, using a learning library (e.g. Lush, EBLearn)

e extracted and compiled into the proper sequence of calls to run on the CNP (we designed a
compiler for this task)

Custom Design

Our current system:

e fits in a single FPGA + an external memory!
* has been integrated onto a 7x8cm printed circuit board!

e only draws up to 15W during peak computations!

In a UAV, the CNP could be used as the main vision
sensor (the camera sensor 1s handled by the CNP) to
detect and track obstacles.
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The FPGA

® Our system fits in a single FPGA with built-in hardware
multiply-accumulate units,

® Its performance is defined by the bandwidth to the
external memory chip.
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Vectorial ALU

Implements ConvNet-specific operations:

® All these operations are vectorial (work on streams), and
compute in the same time for a given input size,

® These 1nstructions are geared towards ConvINets, or more
generally vision systems in which the bulk of computations
1s spent on convolutions,

® The instructions are:

- 2D convolution,

- dot product between n 2D planes and a vector (n dims),

- point-wise non-linear mapping,

- spatial (2D) pooling / subsampling,

- square root of a vector/matrix,

- product between vectors/matrices,

- division of a vector/matrix by another
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VALU: Main Instructions

2D Convolver / Pooling
This instruction performs a 2D convolution [1] on streaming data, and applies spatial pooling at
the output. At each clock cycle, z;; 1s computed according to the formula:

x: input plane,

Output data

K—1K—1 ker: K x K convolution kernel,
Zij = Yij + SJ SJ Titm,j+nkermn, y: plane accumulated to output, z: output plane.
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Non-linear mapping
The point-wise non-linearity 1s implemented as a piecewise approximation of the hyperbolic
tangent function: g(x) ~ A.tanh(B.x), with the following constraint (to use shifts and adds
instead of multipliers):
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m,n € |0,5].

>1000 convs / sec on 640x480 1nputs

CNP: Architecture
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Memory Controller

Provides an abstraction over the memory:

® Instructions in the ALU operate on streams of data,

® Streams are handled by a complex memory controller,
that allows different units of the system to read/write from/
to the external memory asynchronously,

® A dedicated hardware arbiter (priority manager) is used
to multiplex/demultiplex access to the high bandwidth
external memory chip.
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Performance
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Time to convolve a 640x480 image with a KxK kernel
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An Application: Face Detection

A ConvNet was trained on a dataset of faces and non-faces according to the method described
in [2]. Its architecture—number of layers, feature maps—is given in the first figure.

(non faces).

The CNP computes this ConvNet—image acquisition,

scales.

ated on the fly by an asynchronous display manager.

The dataset: 45,000 images—30,000 used for training,
15,000 for testing—50% faces, and 50% random images

post-processing and clas-
sification—at 10fps for a 512x384 input image size and 3

The two pictures show the output of the system when run-
ning the face detection ConvNet. These images are gener-



