
Hardware Accelerated Convolutional Neural
Networks for Synthetic Vision Systems

Clément Farabet1,2, Berin Martini2, Polina Akselrod2, Selçuk Talay2, Yann LeCun1 and Eugenio Culurciello2
1 The Courant Institute of Mathematical Sciences and Center for Neural Science, New York University, USA

2 Electrical Engineering Department, Yale University, New Haven, USA

Abstract— In this paper we present a scalable hardware archi-
tecture to implement large-scale convolutional neural networks
and state-of-the-art multi-layered artificial vision systems. This
system is fully digital and is a modular vision engine with the goal
of performing real-time detection, recognition and segmentation
of mega-pixel images. We present a performance comparison
between a software, FPGA and ASIC implementation that shows
a speed up in custom hardware implementations.

I. I NTRODUCTION

Micro-robots, UAVs, imaging sensor networks, wireless
phones, and other embedded vision systems all require low
cost and high-speed implementations of synthetic vision sys-
tem capable of recognizing and categorizing objects in a scene.
Virtually all recent synthetic vision algorithms targeting gen-
eral recognition problems use one or more layers of filter banks
organized hierarchically to report some degree of invariance
in position, angle and size of the image features [1]. Examples
are the SIFT algorithm, [2], bio-inspired algorithms modeling
the mammalian visual system [3], and deep architectures
[4], [5] using multi-layer neural networks. Synthetic vision
algorithms with multiple layers of features extraction and
learned parameters perform the best [1]. Learning provides
significant performance improvements when specific targets
are known a priori [4], [6]. Convolutional neural networks
(ConvNets) are a synthetic vision architecture that embeds
all these features. ConvNets are feed-forward neural networks
with multiple layers of convolution filters and non-linearities
[4], [6].

In this paper we present a scalable hardware architecture
for large-scale multi-layered synthetic vision systems based on
large parallel filter banks. This hardware can also be used to
accelerate the execution (and partial learning) of recent vision
algorithms like SIFT and HMAX [2], [3]. This system is a
data-flow vision engine that can perform real-time detection,
recognition and localization in mega-pixel images processed
as pipelined streams. The system was designed with the goal
of providing categorization of an arbitrary number of objects,
while consuming ten times less than a bench-top or laptop
computer (target:< 10W).

II. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks or ConvNets are a special
kind of neural networks that take advantage of the locality of
data in images to reduce the number of parameters needed to
process large images. An example of a ConvNet is given in

Figure 1. In this figure we report a network used for generic
object recognition of N classes. Such a network has been
successfully used to classify different objects in numerous
applications [5].

ConvNets have several advantages as a front-end for syn-
thetic vision systems that perform object categorization tasks.
First, they operate with local receptive fields by performing
convolutions: they share weights in the convolution matrices,
so large images can be processed with a reduced set of weights.
This is important as the number of weights in the network
is thus not proportional to the input image (i.e. the final
processing network size is fixed for a specific task.). Second,
spatial subsampling/pooling is used to hierarchically reduce
the input data size at each step of nonlinear computation.
Replicating a small, local receptive field extracts elementary
features from a large input, while sub-sampling the result
reduces the effect of distortion and scale. Combining these
features produces higher-order features that have very good
shift, scale and distortion invariance, a typical feature of high-
level mammalian vision systems [3]

An important aspect of ConvNets is that all of their pa-
rameters can be learned from the data to be modeled. In the
network presented in Figure 1 for instance, all the weights
from the filter banks, pooling functions, and also from the
classifier are learned at the same time, by using stochastic
gradient descent on labeled dataset. When compared to hand-
tweaked feature extractors, ConvNets are more compact, and
amenable to general purpose recognition tasks.

III. SYSTEM IMPLEMENTATION

A fully-digital coded hardware implementation of a scalable
ConvNet [4] has been developed and implemented. Small
analog versions of ConvNets have been implemented, but at
the time were not able to scale [7]. We believe a fully-digital
implementation with current FPGA and ASIC technologies is
the easiest way to get a software-compatible object-recognition
networks, that is easy to setup and operate, use reduced power
consumption and provides high numeric precision. The entire
system is coded in hardware description languages (HDL), and
is targeted for ASIC synthesis or programmable hardware like
FPGAs. The design is a custom single instruction multiple
data (SIMD) processor based on a 32 bit CPU with hardware-
accelerated instructions tailored to ConvNet operations.These
operations are highly optimized and make use of the paral-
lelism available in hardware.

Input Image

1x500x500

Pooling:

20x4x4

kernels

Linear

Classifier

C1: 20x494x494

S2: 20x123x123

C3: 20x117x117

S4: 20x29x29

C5: 200x23x23

F6:

 Nx23x23

Local Divisive

Normalization

Normalized Image

1x500x500

Convolutions w/

filter bank:

20x7x7 kernels

Convs:

100x7x7

kernels

Pooling:

20x4x4

kernels

Convs:

800x7x7

kernels

{ } at (xi,yi)

Object

Categories / Positions

{ } at (xj,yj)

{ } at (xk,yk)

Fig. 1. Architecture of a typical convolutional network forobject recognition. This implements a convolutional featureextractor and a linear classifier for
generic N-class object recognition. All filter kernels sizes are mentioned above the networks, and are all learned from labeled data. The bottom numbers report
the size of image maps at each layer of the network. The network can be computed on arbitrary large input images, producing a classification for each 40x40
sub-window (size of the training data).

Our first implementation of a ConvNet processor on FPGA
was developed on a Xilinx Virtex-4 SX35 FPGA board. The
FPGA was connected to external QDR-SRAM memory in a
custom designed printed circuit board [8]. The custom board
operates at 200MHz with a 72bit wide bus to the memory and
7.2GB/s of memory bandwidth, and was able to implement
convolution arrays of up to 13x13 with the 192 multipliers
of the Virtex-4 FPGA SX35. This system achieved very good
performance, but had limitations in its architecture that lead
to suboptimal usage of the available bandwidth.

A. Architecture

The second-generation architecture proposed in this paper
was designed to increase data throughput by adding multi-
ple parallel vector processing units and allowing individual
streams of data to operate seamlessly within processing blocks.
A schematic summary of theStream Processor system is
presented in Figure 2. The main components of our system are:
(1) a Control Unit CPU, (2) multiple parallelALUs/Streaming
Operators, and (3) aMemory Interface Streaming Engine.

A general purpose CPU acts as a flexible Control Unit for
our system by controlling the configuration bus. Other modules
in the system are connected to a global configuration bus,
which allows for run-time reconfiguration of any parameters
in the system: from the connections between processing tiles,
to the 2D data dimensions mapped to the external memory.

The ALUs are independent processing tiles laid out on a
two-dimensional grid. Each tile is composed of: aGlobal
Router, Local Routers, a Streaming Operator. The ALUs in
Figure 2 have been simplified for clarity: each tile actually
contains four local routers to stream data from/to any of their
four neighbors, and one global router to stream data from/to
global data lines. The local and global routers are configured
at run-time to allow arbitrary routes of data streams in and out
each tile.

The operators in the ALU are fully pipelined to produce
one result per clock cycle. The ALUs implement all the
typical macroscopic operators required to compute layers of
bio-inspired models, and more precisely ConvNets: 1) 2D
convolver (implemented in the FPGA by the dedicated mul-
tipliers), 2) dot products between a vector and multiple 2D
planes, 3) spatial pooling (image subsampling), 4) arbitrary

non-linear mappings (such as: sigmoid, hyperbolic tangent,
square root, rectification), 5) element-wise division of a vector
by another, 6) element-wise multiplication of a vector by
another. The 2D convolutions in a ConvNet use 80 to 90% of
the total amount of computations performed by the network,
so large arrays of multiply-accumulate units are needed to
accelerate the system [8].

We chose Q8.8 as coding of numbers in the network, after
estimating the influence of quantization noise. The pipelined
implementation of the convolution operation in hardware (as
described in [8]), computes equation 1 at every clock cycle.

zij = yij +

K−1∑

m=0

K−1∑

n=0

xi+m,j+nwmn, (1)

In equation 1xij is a value in the input plane,wmn is
a value in aK × K convolution kernel,yij is a value in a
plane to be combined with the result, andzij is the output
plane. Both the kernel and the image are streams loaded from
the memory, and the filter kernels can be pre-loaded in local
caches concurrently to another operation: each new pixel thus
triggersK × K parallel operations. The convolution pipeline
is 32bit wide, to keep full precision between successive
accumulations.

All the non-linearities in neural networks are implemented
with a piecewise linear approximation operator, as described
by 2. The piecewise mapping is performed by a hardware
mapper, which streams the input data through a cascade of
simple linear mappers. Each mapper is configurable at run-
time, so many different functions can be programmed and used
in the network. By using coefficientai in equation 3, all the
linear mappings can be implemented with shifts and adds only.

g(x) = aix + bi for x ∈ [li, li+1] (2)

ai =
1

2m
+

1

2n
m,n ∈ [0, 5]. (3)

The data lines to and from memory are handled by a
Multiport DMA Streaming Engine specifically designed for
image manipulations. The streaming engine interfaces any
kind of memory module (internal or external), and offers
Nx16bit asynchronous read/write ports on the other side,

STREAM PROCESSOR

External

DDR

RAM

Camera

Monitor

Bus Controller

Bus Decoder

Bus Decoder

Configuration Bus : 32bit + Status : 3bit

Data Lines : Nx16bit

General

Purpose

CPU

Bus Controller

Multiport

DMA

Streaming

Engine

...

Data Interface

R
A

M

Global Router

L
o

c
a

l
R

o
u

te
r

L
o

c
a

l
R

o
u

te
r

OPERATOR

Bus Decoder

Global Router

L
o

c
a

l
R

o
u

te
r

L
o

c
a

l
R

o
u

te
r

OPERATOR

...

...

M
e

m
 I
n

te
rf

a
c
e

External

FLASH

......

Control Unit

[general purpose cpu]

Processing Tiles / ALUs = Streaming Operators

[convolution, piece-wise mapping...]

Memory Interface

Streaming Engine

G
lo

b
a

l
R

o
u

te
r

DVI in

DVI out

DVI Capture

& Generation

CU

ALU ALU

DMA

......

......

Fig. 2. Overview of the hardware ConvNet system. A CPU was augmented with multiple full-custom ALUs tailored to ConvNet operations, and a fast
streaming memory interface. ALUs are organized on a 2D grid: they can stream data to their closest neighbors, and to the global lines connected to the
memory interface.

which allows multiple simultaneous streams from/to the same
memory locations, even if at different data rates. A dedicated
arbiter is used as hardwareMemory Interface to multiplex
and demultiplex access to the external memory with high
bandwidth. Subsequent buffers on each port insure continuity
of service on a port while the others are utilized.

This module is the foundation of our system: it allows any
other module in the entire design to read/write any image
as a continuous stream of pixels from/to memory without
any concern for the others. This allows to perform multiple
operations (such as convolutions) on multiple image maps at
the same time.

In our current system, the ALUs are synchronous to the
memory bus clock, which gives the following relationship
between the memory bandwidthB, the number of possible
parallel data transfersN and the bits per pixelP : N = B/P .
For exampleP = 16bit and B = 128bit/cyc allows N = 7
simultaneous transfers.

B. Operation

The typical execution of an instruction on this system is
the following: 1) the CPU configures each tile to be used
for the computation and each connection between the tiles
and their neighbors and/or the global lines, by sending a
configuration command to each of them, 2) it configures the
streaming engine to prefetch the data to be processed, and to
be ready to write the results, 3) when the streaming engine is
ready, it triggers the streaming out, 4) each ALU processes its
respective incoming streaming data, and passes the resultsto
another tile, or back to the streaming engine, 5) the CPU is
notified of the end of operations when the streaming engine
has completed. The behavior of each port in the Streaming
Engine can be configured separately by using the configuration
bus. The configuration consists of the 2D offsets and 2D
dimensions of an image in memory (which is viewed as two-
dimensional by the streaming engine).

Prior to being run on the Stream Processor, a ConvNet
has to be trained offline, on a regular computer, and then

converted to a compact representation that can be interpreted
by an embedded program (running on the CPU) to generate
the control/configuration for the system. Special softwarewas
developed to unify these two steps. This software, written in
pureC++, is used to train then execute ConvNets on a variety
of embedded platforms, with or without hardware acceleration.
The library, called Nrgizer, provides a high-level modularand
scalable implementation of ConvNets (similar to Lush1).

A typical setup would be as such: 1) Nrgizer is used on
a computer to train a ConvNet for a particular task, using
some dataset, 2) the trained network is saved and quantized
to the Stream Processor’s Q8.8 coding, 3) it is sent to a
running version of Nrgizer on the Stream Processor, and saved
locally (flash memory), 4) it is then interpreted on the CPU,
by using all the ALUs/Streaming capabilities that are im-
plemented in Nrgizer as low-level routines (software Control
Unit), 5) embedded Nrgizer has full access to the data, and
can perform post-processing operations for object detection,
such as non-max suppression, calculations of centroids of
activities (attention), and other functions that do not necessitate
an hardware implementation.

IV. RESULTS

Figures 3 and 4 report a performance comparison between
a laptop CPU, a FPGA implementation, and a future ASIC
implementation for the computation of the ConvNet presented
in Figure 1. This network is composed of a non-linear nor-
malization layer, 3 convolutional layers, 2 pooling layers,
and a linear classifier. The convolutional layers and pooling
layers are followed by non-linear activation units (hyperbolic
tangent). Overall, it possesses 920 KxK learned kernels, 40
4x4 learned subsampling kernels, and N200 dimension clas-
sification vectors. For a 500x500 input image andK = 7,
the network has 435 Million linear connections (multiply and
accumulate operations).

Figure 3 shows the frames per second versus input image
size with a fixed 9x9 convolution filter (K = 9) for the whole

1Lisp Universel SHell:http://lush.sourceforge.net

http://lush.sourceforge.net

ConvNet, and 5 output classes (N = 5). When the input image
size varies, the network adapts the sizes of all its internal
maps accordingly, producing an output map with a size linearly
related to the input size.

Figure 4 reports frames per second vs convolution filter
sizes, assuming the ConvNet uses the same filter size in all
three layers, an input image of 500x500 pixels, and other
parameters as mentioned above. When the kernel sizes vary,
the internal maps sizes vary accordingly.

The CPU data was measured from our compiled library
Nrgizer (optimized C code, GNU C compiler) on a Core 2
Duo 2.4GHz Apple Macbook PRO laptop operating at 90W,
the FPGA data was measured on a Xilinx Virtex-4 SX35
operating at 200MHz and 15W with 3 data lines used in
parallel (to and from the external memory) [8], and the ASIC
data is simulation data gathered from Tezzaron 3D process. A
conservative estimate of the projected ASIC speed is 400MHz
(speeds of up to> 1 GHz are possible) with 8 ALU convolvers
running in parallel, and 10 data lines. The projected power
consumption of the ASIC is 1W.

100 200 300 400 500 600 700 800
10

-1

10
0

10
1

10
2

10
3

10
4

image size

fp
s

CPU
FPGA
ASIC

Fig. 3. Frames/s from a ConvNet similar to Fig.1 vs the size of input images
and using convolutional filters of 9x9.

3x3 7x7 11x11 15x15 19x19
10

-1

10
0

10
1

10
2

10
3

filter sizes

fp
s

CPU
FPGA
ASIC

Fig. 4. Frames/s from a ConvNet similar to Fig.1 vs the size of convolution
filters for a fixed image size of 500x500.

As we can see from these results an ASIC system or a
modern Virtex 6 FPGA can run the ConvNet system in real

time (> 30fps) with filters up to 21x21 in size, and images
approaching 1 mega-pixels.

Nrgizer has been tested on standard datasets:Small NORB,
MNIST and theUMASS face dataset. ForNORB, 85% recog-
nition rate was achieved on the unknown dataset, forMNIST,
95% and forUMASS, 98%. The same test were conducted on
the Stream Processor with fixed-point representation (Q8.8),
and the results were, respectively: 85%, 95% and 98%.

V. CONCLUSION

We report the design of a hardware accelerated ConvNet
system that is capable of running in real time with low
power consumptions, while providing performance that is
better than conventional laptop computers. This architecture
is demonstrated in multiple FPGA implementations. Future
work will include implementation in a high-performance ASIC
system capable of delivering real-time operation on 1 mega-
pixel images with 1W of power.

While our current FPGA implementation can perform
medium complexity tasks such as face detection/tracking in
real-time, the ASIC implementation will open the doors to
more complex and generic recognition tasks. Multiple object
detection [5] or online learning for adaptive robot guidance [9]
are tasks that will be largely improved by this system.

ACKNOWLEDGMENT

This work was partially supported by NSF grant ECCS-
0901742, by ONR MURI BAA 09-019, DARPA NeoVision2
program BA 09-58.

REFERENCES

[1] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best
multi-stage architecture for object recognition?” inProc. International
Conference on Computer Vision (ICCV’09). IEEE, 2009.

[2] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,”in CVPR ’06:
Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 2169–2178.

[3] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust
object recognition with cortex-like mechanisms,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 411–426,
2007.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,”Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, November 1998.

[5] Y. LeCun, F.-J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in Proceedings
of CVPR’04. IEEE Press, 2004.

[6] M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun, “Unsupervised learning
of invariant feature hierarchies with applications to object recognition,” in
Proc. Computer Vision and Pattern Recognition Conference (CVPR’07).
IEEE Press, 2007.

[7] E. Säckinger, B. Boser, J. Bromley, Y. LeCun, and L. D. Jackel,
“Application of the ANNA neural network chip to high-speed character
recognition,” IEEE Transaction on Neural Networks, vol. 3, no. 2, pp.
498–505, March 1992.

[8] C. Farabet, C. poulet, J. Han, and Y. LeCun, “CNP: An FPGA-based
Processor for Convolutional Networks,” inInternational Conference on
Field Programmable Logic and Applications. Prague: IEEE, September
2009.

[9] R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavackuoglu,
U. Muller, and Y. LeCun, “Learning long-range vision for autonomous
off-road driving,” Journal of Field Robotics, vol. 26, no. 2, pp. 120–144,
February 2009.

	Introduction
	Convolutional Neural Networks
	System Implementation
	Architecture
	Operation

	Results
	Conclusion
	References

