
Bio-Inspired Vision Processor
for Ultra-Fast Object Categorization

Clément Farabet1,2, Berin Martini2, Polina Akselrod2, Benoit Corda1
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Abstract—We present a scalable hardware architecture to
implement large-scale bio-inspired synthetic vision systems. The
system is a fully digital implementation of a modular vision
engine that can perform real-time detection, recognition and
segmentation of mega-pixel images. We present performance
comparisons between software versions of the vision system
executing on CPU and GPU machines, and show that our FPGA
implementation can outperform these systems by a factor of four.

I. INTRODUCTION
Micro-robots, UAVs, imaging sensor networks, wireless

phones, and other embedded vision systems all require low
cost and high-speed implementations of synthetic vision sys-
tems capable of recognizing and categorizing objects in a
scene, from faces [1] to objects [2], [3] or obstacles for robot
navigation [4].
In this paper we present a scalable hardware architecture

for large-scale multi-layered synthetic vision systems based
on large parallel filter banks called NeuFlow. This vision
processor (VP) is a data-flow engine that can perform real-time
detection, recognition and localization in mega-pixel images
processed as pipelined streams. The system was designed with
the goal of providing categorization of an arbitrary number of
objects, while consuming ten times less than a bench-top or
laptop computer, on the order of 10W.

Fig. 1. A custom embedded vision system prototype composed of an input
camera, an FPGA and two external QDR memory chips.

II. SYSTEM IMPLEMENTATION
The architecture of our vision processor is designed to

increase data throughput by using parallel vector processing
units and allowing individual streams of data to operate
seamlessly within processing blocks.
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Fig. 2. Overview of the NeuFlow vision processor. A grid of multiple full-
custom Processing Tiles tailored to massive convolutional operations, and a
fast streaming memory interface (Smart DMA).

Recent FPGAs include a large number of multiply-
accumulate (MAC) units, which allows fast prototyping and
real-time simulation of vision system that heavily rely on these
operation to process image flows. An example of our first
vision system prototype using modern FPGAs is portrayed in
Figure 1.
A schematic summary of the NeuFlow system is presented

in Figure 2. The main components are: (1) a Control Unit
(implemented on a general purpose CPU), (2) a grid of
Processing Tiles (PTs), and (3) a Smart DMA interfacing
external memory via a standard controller. The Control Unit
is implemented by a general purpose 32bit CPU, a more
convenient solution than custom state machines, as it allows
the use of standard C compilers. Moreover, the CPU has full
access to the external memory (via global data lines), and it
can use this large storage to store its program instructions.
The PTs are independent processing tiles laid out on a

two-dimensional grid. The PTs contain a routing multiplexer
(MUX) and local operators. This implementation is specialized
for vision processing applications that rely heavily on two-
dimensional convolutions. The components of the systems are:

• the top row PTs of Figure 2 only implement Multiply
and Accumulate (MAC) arrays (

∑∏
operators), which

can be used as 2D convolvers (implemented in the FPGA



by dedicated hardwired MACs). It can also perform on-
the-fly subsampling (spatial pooling), and simple dot-
products (linear classifiers) [5].

• the middle row PTs contain general purpose operators
(for divisive normalization, squaring and dividing are
required),

• the bottom row PTs implement non-linear mapping en-
gines, used to compute all sorts of functions from Tanh()
to Sqrt() or Abs(). Those can be used at all stages of
the ConvNets, from normalization to non-linear activation
units.

The operators in the PTs are fully pipelined to produce one
result per clock cycle. Image pixels are stored in off-chip mem-
ory as Q8.8 (16bit, fixed-point), but scaled to 32bit integers
within operators, to keep full precision between successive
operations. III. RESULTS
Figures 3 and 4 report a performance comparison between

a laptop CPU (Apple Macbook Pro with 2.4GHz Intel Core
2 Duo), two GPU systems (NVIDIA 9400M from a Macbook
Pro laptop, and a NVIDIA Tesla machine C1060), and our
system implemented in 2 different FPGAs: a Xilinx Virtex4
(custom board SX35 with two external QDR memory chipset,
as illustrated in Figure 1) and a Xilinx Virtex6 (ML605)
To compare these systems, we executed a state-of-the-

art convolutional neural network (ConvNet) synthetic vision
system trained for obstacle avoidance, scene classification [4].
The network is composed of a non-linear normalization layer,
2 convolutional layers, 1 pooling layer, and a linear classifier.
The convolutional layers and pooling layers are followed by
non-linear activation units (hyperbolic tangent). Overall, it
possesses 920 KxK learned kernels, 40 4x4 learned subsam-
pling kernels, and N 200 dimension classification vectors. For
a 500x500 input image and K = 7, the network has 435 Mil-
lion linear connections (multiply and accumulate operations).
Figure 3 shows the frame per second versus input image

size with a fixed 9x9 convolution filter (K = 9) for the whole
ConvNet, and 5 output classes (N = 5). When the input image
size varies, the network adapts the sizes of all its internal
maps accordingly, producing an output map with a size linearly
related to the input size.

Fig. 3. Frames per second vs the size of input images and using convolutional
filters of 9x9.

Figure 4 reports the frames per second vs convolution filter
sizes, assuming the ConvNet uses the same filter size in all
three layers, an input image of 500x500 pixels, and other
parameters as mentioned above. When the kernel sizes vary,
the internal maps sizes vary accordingly.

Fig. 4. Frames per second vs the size of convolution filters for a fixed image
size of 500x500.
Figure 3 attests that our newest Virtex 6 FPGA system

can run the ConvNet system in real time (> 30fps) with
image sizes of 512x512 pixels, surpassing one of the most
performing GPU in the market by 4 times. Figure 4 shows that
performance is independent of the convolution kernel size, up
to the number of MACs unit used in the system (100 in this
case).

IV. CONCLUSION
We report the design of a hardware accelerated ConvNet

system that is capable of running in real time with low power
consumptions, while providing performance that is better than
conventional laptop computers and advanced GPUs. Future
work will include implementation in a high-performance ASIC
system capable of delivering real-time operation on 1 mega-
pixel images with 1W of power.
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